Performance Enhancement of TBAI Capped CdSe-Quantum Dot Sensitized Solar Cells by an Interlayer Gold Nanoparticles
Abstract
The photovoltaic performance (PV) of quantum dot sensitized solar cells (QDSSCs) has been studied by the addition of gold nanoparticles (Au NPs) at three configuration interlayer positions in the photoanodes. The resulting photoanodes are (i) Fluorine doped tin oxide (FTO) /Au NPs/TiO2/CdSe QDs,(ii) FTO/TiO2/Au NPs/CdSe QDs and (iii) FTO/TiO2/CdSe QDs/Au NPs. The TOPO and HDA capping of CdSe QDs has been modified to be TBAI in order to decrease the CdSe-TiO2 molecular separation. The average size of Au NPs is ~ 15nm as measured by HRTEM. Our results show that the configuration with Au NPs deposited directly on FTO exhibit a noticeable improvement of the power conversion efficiency (PCE) from 0.62% to 1.1%, while the other two configurations show a slight improvement in their performance. The effect of Au NPs in the three photonode configurations on the photovoltaic performance are discussed.References
Kamat, Prashant V. "Quantum dot solar cells. Semiconductor nanocrystals as light harvesters." The Journal of Physical Chemistry C" 112.48 (2008):18737-18753.
Mehrabian, Masood, Kavoos Mirabbaszadeh, and Hossein Afarideh. "Experimental optimization of molar concentration to fabricate PbS quantum dots for solar cell applications. " Optik-International Journal for Light and Electron Optics 126, no. 5 (2015): 570-574.
Kokate, Sunita K., Chaitali V. Jagtap, Prashant K. Baviskar, Sandesh R. Jadkar, Habib M. Pathan, and Kakasaheb C. Mohite. "CdS sensitized cadmium doped ZnO solar cell: Fabrication and characterizations." Optik-International Journal for Light and Electron Optics 157 (2018): 628-634.
Tvrdy, Kevin, Pavel A. Frantsuzov, and Prashant V. Kamat. "Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. " Proceedings of the National Academy of Sciences" 108.1 (2011): 29-34
Ali Badawi, N. Al-Hosiny, Amar Merazga, Ateyyah M. Albaradi, S. Abdallah, and H. Talaat. "Study of the back recombination processes of PbS quantum dots sensitized solar cells." Superlattices and Microstructures" 100 (2016): 694-702.
Yang, Peizhi, Qunwei Tang, Chenming Ji, and Haobo Wang. "A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells." Applied Surface Science" 357 (2015): 666-671.
Singh, Neetu, R. M. Mehra, Avinashi Kapoor, and T. Soga. "ZnO based quantum dot sensitized solar cell using CdS quantum dots." Journal of renewable and sustainable energy"4, no. 1 (2012): 013110.
Yum, Jun-Ho, Sang-Hyun Choi, Seok-Soon Kim, Dong-Yu Kim, and Yung-Eun Sung. "CdSe quantum dots sensitized TiO2 electrodes for photovoltaic cells." Journal of the Korean Electrochemical Society" 10, no. 4 (2007): 257-261.
Niu, Guangda, Liduo Wang, Rui Gao, Wenzhe Li, Xudong Guo, Haopeng Dong, and Yong Qiu. "Inorganic halogen ligands in quantum dots: I−, Br−, Cl− and film fabrication through electrophoretic deposition." Physical Chemistry Chemical Physics" 15, no. 45 (2013): 19595-19600.
De La Fuente, Mauricio Solis, Rafael S. Sánchez, Victoria González-Pedro, Pablo P. Boix, S. G. Mhaisalkar, Marina E. Rincón, Juan Bisquert, and Iván Mora-Seró. "Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells." The journal of physical chemistry letters" 4, no. 9 (2013): 1519-1525.
Lu, Haipeng, Jimmy Joy, Rachel L. Gaspar, Stephen E. Bradforth, and Richard L. Brutchey. "Iodide-passivated colloidal PbS nanocrystals leading to highly efficient polymer: nanocrystal hybrid solar cells." Chemistry of Materials"28, no. 6 (2016): 1897-1906.
Ayyaswamy, Arivarasan, Sasikala Ganapathy, Ali Alsalme, Abdulaziz Alghamdi, and Jayavel Ramasamy. "Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells." Superlattices and Microstructures" 88 (2015): 634-644
Dao, Van-Duong, and Ho-Suk Choi. "Highly-efficient plasmon-enhanced dye-sensitized solar cells created by means of dry plasma reduction." Nanomaterials" 6, no. 4 (2016): 70
Kouskoussa, B., M. Morsli, K. Benchouk, G. Louarn, Linda Cattin, A. Khelil, and J. C. Bernede. "On the improvement of the anode/organic material interface in organic solar cells by the presence of an ultra‐thin gold layer." physica status solidi (a) " 206, no. 2 (2009): 311-315.
Bernède, J. C., Y. Berredjem, L. Cattin, and M. Morsli. "Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer." Applied Physics Letters" 92, no. 8 (2008): 62 .
Zhu, Guang, Fengfang Su, Tian Lv, Likun Pan, and Zhuo Sun. "Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells." Nanoscale research letters" 5, no. 11 (2010): 1749.
Oliveira, Matheus Costa de, André Luis Silveira Fraga, Anderson Thesing, Rocelito Lopes de Andrade, Jacqueline Ferreira Leite Santos, and Marcos José Leite Santos. "Interface dependent plasmon induced enhancement in dye-sensitized solar cells using gold nanoparticles." Journal of Nanomaterials" 16, no. 1 (2015): 386.
Zhong, Xinhua, Yaoyu Feng, and Yuliang Zhang. "Facile and reproducible synthesis of red-emitting CdSe nanocrystals in amine with long-term fixation of particle size and size distribution." The Journal of Physical Chemistry C" 111, no. 2 (2007): 526-531
Zhu, Guang, Fengfang Su, Tian Lv, Likun Pan, and Zhuo Sun. "Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells." Nanoscale research letters" 5, no. 11 (2010): 1749
Amr Hessein, Feijiu Wang, Hirokazu Masai, Kazunari Matsuda, and Ahmed Abd El-Moneim. "Improving the stability of CdS quantum dot sensitized solar cell using highly efficient and porous CuS counter electrode." Journal of Renewable and Sustainable Energy" 9, no. 2 (2017): 023504.
Ha Thanh, Tung, Dat Huynh Thanh, and Vinh Quang Lam. "The CdS/CdSe/ZnS photoanode cosensitized solar cells basedon Pt, CuS, Cu2S, and PbS counter electrodes." Advances in OptoElectronics" 2014 (2014).
Yu, W. William, Lianhua Qu, Wenzhuo Guo, and Xiaogang Peng. "Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals." Chemistry of Materials" 15, no. 14 (2003): 2854-2860.
Kyobe, Joseph W., Egid B. Mubofu, Yahya MM Makame, Sixberth Mlowe, and Neerish Revaprasadu. "CdSe quantum dots capped with naturally occurring biobased oils." New Journal of Chemistry" 39, no. 9 (2015): 7251-7259.
Thambidurai, M., N. Murugan, N. Muthukumarasamy, S. Vasantha, R. Balasundaraprabhu, and S. Agilan. "preparation and characterization of nanocrystalline CdS thin films.." Chalcogenide Letters" 6, no. 4 (2009).
Madelung, Otfried. Semiconductors: data handbook. Springer Science & Business Media, 2012.
Heba Hassan, T. Abdallah, S. Negm, and H. Talaat. "Rabi like angular splitting in Surface Plasmon Polariton–Exciton interaction in ATR configuration." Applied Surface Science" 441 (2018): 341-346.
Truong, Nguyen Tam Nguyen, Woo Kyoung Kim, Umme Farva, Xiang Dong Luo, and Chinho Park. "Improvement of CdSe/P3HT bulk hetero-junction solar cell performance due to ligand exchange from TOPO to pyridine." Solar Energy Materials and Solar Cells" 95, no. 11 (2011): 3009-3014.
Mohammed T.Hussein, Thekra K. Abd Al Raheem, Omar A. Ebrahim, Bushra A. Hassan, and Hasan B.J asim,’’ Study the optical, structural and electrical properties of CdSe nanoparticles with different Se concentration. "International Journal of Engineering and Innovative Technology (IJEIT) ", 4, (2014) 2277.
Hone, Fekadu Gashaw, Francis Kofi Ampong, Tizazu Abza, Isaac Nkrumah, Robert Kwame Nkum, and Francis Boakye. "Synthesis and characterization of CdSe nanocrystalline thin film by chemical bath deposition technique." Int. J. Thin. Fil. Sci. Tec" 4, no. 2 (2015): 69-74.
Jasieniak, Jacek, Jessica Pacifico, Raffaella Signorini, Alessandro Chiasera, Maurizio Ferrari, Alessandro Martucci, and Paul Mulvaney. "Luminescence and Amplified Stimulated Emission in CdSe–ZnS‐Nanocrystal‐Doped TiO2 and ZrO2 Waveguides." Advanced Functional Materials" 17, no. 10 (2007): 1654-1662.
Shao, Feiyan, Ming Li, Jianwen Yang, Yongpin Liu, and Lingzhi Zhang. "CdSe quantum dot-sensitized solar cell: Effect of size and attach mode of quantum dot." Journal of Nano Research" 30 (2015).
Gao, Xin, Xiangxuan Liu, Zuoming Zhu, Ying Gao, Qingbo Wang, Fei Zhu, and Zheng Xie."Enhanced visible light photocatalytic performance of CdS sensitized TiO2 nanorod arrays decorated with Au nanoparticles as electron sinks." Scientific reports" 7, no. 1 (2017): 973
Authors who submit papers with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- By submitting the processing fee, it is understood that the author has agreed to our terms and conditions which may change from time to time without any notice.
- It should be clear for authors that the Editor In Chief is responsible for the final decision about the submitted papers; have the right to accept\reject any paper. The Editor In Chief will choose any option from the following to review the submitted papers:A. send the paper to two reviewers, if the results were negative by one reviewer and positive by the other one; then the editor may send the paper for third reviewer or he take immediately the final decision by accepting\rejecting the paper. The Editor In Chief will ask the selected reviewers to present the results within 7 working days, if they were unable to complete the review within the agreed period then the editor have the right to resend the papers for new reviewers using the same procedure. If the Editor In Chief was not able to find suitable reviewers for certain papers then he have the right to accept\reject the paper.B. sends the paper to a selected editorial board member(s). C. the Editor In Chief himself evaluates the paper.
- Author will take the responsibility what so ever if any copyright infringement or any other violation of any law is done by publishing the research work by the author
- Before publishing, author must check whether this journal is accepted by his employer, or any authority he intends to submit his research work. we will not be responsible in this matter.
- If at any time, due to any legal reason, if the journal stops accepting manuscripts or could not publish already accepted manuscripts, we will have the right to cancel all or any one of the manuscripts without any compensation or returning back any kind of processing cost.
- The cost covered in the publication fees is only for online publication of a single manuscript.