On the Modification of M-out-of-N Bootstrap Method for Heavy-Tailed Distributions

  • Hannah F. Opayinka Federal College of Education (Special), Oyo State, Nigeria / University of Ibadan, Nigeria.
  • Adedayo A. Adepoju
Keywords: Bootstrap, Decomposition, Heavy-tailed distributions, Singh-Maddala distribution.

Abstract

This paper is on the modification of m-out-of-n bootstrap method for heavy-tailed distributions such as income distribution. The objective of this paper is to present a modified m-out-of-n bootstrap method (mmoon) and to compare its performance with m-out-of-n bootstrap method (moon). The distribution involved has finite variance. The simulated data sets used was drawn from Singh-Maddala distribution. The methodology involves decomposition of the empirical distribution and sampling only  times with replacement from a sample size , such that  and . The nature of the upper tail of a distribution is the major reason for the poor performance of classical bootstrap methods even in large samples. The ‘mmoon’ bootstrap method is proposed as an alternative method to ‘moon’ bootstrap method. Choosing an estimator of interest, the statistical precision of the bootstrap estimator is measured through bootstrap estimates of: standard error; absolute bias; coefficient of variation and root mean square error. The findings suggest that ‘mmoon’ performs better than moon in moderate and larger samples and it converges faster

References

[1] M. R. Chernicks. Bootstrap Methods: A guide for Practitioners and Researchers. Hoboken, New Jersey: John Wiley & Sons, Inc., 2008, pp. 1, 50, 180.
[2] D. Brownstone and R. Valletta. “The Bootstrap and Multiple Imputations.” Internet: http://www.economics.uci.edu/~dbrownst/bootmi.pdf. Dec. 28, 2000. [Feb. 07, 2012].
[3] R. Davidson and E. Flachaire. (2007, Oct.). “Asymptotic and Bootstrap Inference for Inequality and Poverty Measures.” Journal of Econometrics. [ On-line]. 141(1), pp. 141-166. Available: https://hal.archives-ouvertes.fr/halshs-00175929/document [Mar. 19, 2012].
[4] M. Biewen (2001, Nov.). “Bootstrap Inference for Inequality, Mobility and Poverty Measurement.” Journal of Econometrics. [On-line]. 108 (2002), pp. 317-342. Available: http://kumlai.free.fr/RESEARCH/THESE/TEXTE/MOBILITY/mobility%20salariale/Bootstrap%20inference%20for%20inequality,%20mobility%20and%20poverty%20measurment.pdf [Dec. 07, 2011].
[5] J. A. Mills and S. Zandvakili. “Statistical Inference via Bootstrapping for Measures of inequality” Internet: http://www.levyinstitute.org/publications/statistical-inference-via-bootstrapping-for-measures-of-inequality, Feb. 1997. [Jun. 06, 2012]
[6]Wikimedia Foundation, Inc. “Bootstrapping (Statistics).” Internet: http://en.wikipedia.org/wiki/Bootstrapping_(Statistics), Aug. 18, 2015 [Oct. 28, 2013].
[7] A. Antoniadis. “Bootstrap Methods: Recent Advances and New Applications.” Internet: http://www. mescal.imag.fr/membres/yves.denneulin/LASCAR/page2/files/BootstrapAA.pdf, Oct. 2007. [Jun. 14, 2012]
[8] K. Singh and M. Xie. “Bootstrap: A Statistical Method.” Internet: www.stat.rutgers.edu/home/mxie/rcpapers /bootstrap.pdf, [Feb. 08, 2012].
[9] P. J. Bickel and A. Sakov (2002, Apr.). “Extrapolation and the boostrap.” The Indian Journal of Statistics. [On-line]. 64(3), pp. 640- 652. Available: http://www.jstor.org/stable/25051419 [Nov. 13, 2014].
[10] S. M. S. Lee and M. C. Pun (2006, Sep.). “On m-out of-n Boostrapping for Non Standard M-estimation with Nuisance Parameters.” Journal of American Statistics Association. [On-line]. 101(475), pp. 1185-1197. Available: http://www.jstor.org/stable/27590794 [Jan. 20, 2015].
[11] P. J. Bickel and D. A. Freedman (1981, Mar.). “Some Asymptotic Theory for the Bootstrap.” The Annals of Statistics. [On-line]. 9(6), pp. 1196-1217. Available: http://projecteuclid.org/download/pdf_1/euclid.aos/1176345637, [Feb. 08, 2012].
[12] B. Sen, M. Banerjee and M. Woodroofe (2010, Oct.). “Inconsistency of Bootstrap: The Grenander Estimator.” The Annals of Statistics. [On-line]. 38(4), pp. 1953-1977. Available: http://arxiv.org/abs/1010.3825, [Feb. 17, 2012].
[13] M. R Chernicks and R. A. LaBudde. (2011, Nov. 1). An Introduction to Bootstrap Methods with Applications to R. (1st edition) [On-line]. Available: http://nnpdf.pillaroftheworld.com/an-introduction-to-bootstrap-methods-robert-a-labudde-96621231.pdf [Jun. 14, 2012].
[14] T.O Olatayo, G.N. Amahia and T.O. Obilade. ( 2010). “Bootstrap Method for Dependent Data Structure and Measure of Statistical Precision.” .Journal of Mathematics and Statistics. [On-line]. 6(2), pp. 84-88. Available: http://thescipubl.com/abstract/10.3844/jmssp.2010.84.88, [Jun. 08, 2012].
[15] A. C. Davison and D. Kuonen. (2002). “An Introduction to the Bootstrap with Applications in R.” Statistical Computing and Graphics Newsletter. [On-line]. 13(1), pp. 6-11. Available: http://www.statoo.com/en/publications/bootstrap_scgn_v131.pdf [Aug. 22, 2012].
Published
2015-09-11