Life Cycle of High Mass Star

Authors

  • Sabir Sadiq Kurdistan Space Agency, Shiladoze, Duhok, Kurdistan

Keywords:

Nebula, Gravity, High mass stars, Dark Fabric matter and energy, Nuclear fusions

Abstract

          In the present work, I shall explain the gravity and life cycle of a high mass Stars. Mathematical equations are important factors to describe the role of a gravity as a dark fabric distortion. The space of Universe is not empty at whole, but it is completed by a dark fabric matter and energy that distorted under the stress of a high mass Stars from their Birth to a Death. Dark fabric is warping strongly under the effect of Neutron Stars and black holes. Blue Supergiant stars are high mass Stars where their masses are very high may burn their fuel very quickly to produce new heavy atoms, and release tremendous amount of energy, and plasma. All main sequence stars in such high mass may die and expand to become a red supergiant when their fuel of fusion exhausted at the final stages of a star’s lifetime. Supergiant stars may die and explode with a big and luminous explosion that named a supernova. The remnant core of high mass stars may become a neutron star or black hole according to the mass of an exploded stars.

References

. A. P. Boss; R. H. Durisen (2005). "Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation". The Astrophysical Journal. 621 (2): L137–L140. arXiv:astro-ph/0501592. Bibcode:2005ApJ...621L.137B. doi:10.1086/429160. S2CID 15244154.

. Stahler, S. W. & Palla, F.(2004). The Formation of Stars. Weinheim: Wiley-VCH. ISBN 3-527-40559-3.

. JWST, NASA, and ESA.(2022). https://astronomynow.com/2022/07/12/webb-stellar-nursery-in-carina/

. Sadiq, Sabir, and Anuar Alias. "Black holes formations and dark fabric distortions." American Academic Scientific Research Journal for Engineering, Technology, and Sciences 87, no. 1 (2022): 168-187.

. Thierry Montmerle; Jean-Charles Augereau; Marc Chaussidon (2006). "Solar System Formation and Early Evolution: the First 100 Million Years". Earth, Moon, and Planets. Springer. 98 (1–4): 39–95. Bibcode:2006EM&P...98...39M. doi:10.1007/s11038-006-9087-5. S2CID 120504344.

. A. P. Boss; R. H. Durisen (2005). "Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation". The Astrophysical Journal. 621 (2): L137–L140. arXiv:astro-ph/0501592. Bibcode:2005ApJ...621L.137B. doi:10.1086/429160. S2CID 15244154.

. S Pfalzner, M B Davies, M Gounelle.(2014). ''The formation of the solar system''. Max-Planck Institut fur Radioastronomie, Auf dem H ¨ ugel 69, 53121 Bonn, Germany ¨,. Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, 22100 Lund, Sweden. IMPMC, Museum National d’Histoire Naturelle, Sorbonne Universit ´ es, CNRS, UPMC & ´IRD, 57 rue Cuvier, 75005 Paris, France.

. Woolfson, M. (2000). "The origin and evolution of the solar system" (PDF). Astronomy & Geophysics. 41 (1): 12. Bibcode:2000A&G....41a..12W. doi:10.1046/j.1468-4004.2000.00012.x. Archived (PDF) from the original on 11 July 2020. Retrieved 12 April 2020.

. LeBlanc, Francis. (2010). An Introduction to Stellar Astrophysics. Université de Moncton, Canada. John Wiley & Sons. ISBN 9780470699560(pbk.).

. Simona E. Hunyadi Murph EMAIL logo and Melissa A. Murph. ( January 27, 2022). '' Nuclear fusion: the promise of endless energy''. Physical Sciences Reviews Journal. https://doi.org/10.1515/psr-2021-0069.

. Markus J Aschwanden.(2005). Physics of the Solar Corona An Introduction with Problems and Solutions. ISBN 3-540-30765-6 Springer-Verlag Berlin Heidelberg New York.

. Sarah L E McDonald, Ben Davies, Emma R Beasor. (27 November 2021). ''Red supergiants in M31: the Humphreys–Davidson limit at high metallicity ''. Monthly Notices of the Royal Astronomical Society, Volume 510, Issue 3, March 2022, Pages 3132–3144, https://doi.org/10.1093/mnras/stab3453.

. Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901. S2CID 15109583.

. Kiss, L. L.; Szabo, G. M.; Bedding, T. R. (2006). "Variability in red supergiant stars: Pulsations, long secondary periods and convection noise". Monthly Notices of the Royal Astronomical Society. 372 (4): 1721–1734. arXiv:astro-ph/0608438. Bibcode:2006MNRAS.372.1721K. doi:10.1111/j.1365-2966.2006.10973.x. S2CID 5203133.

. Ritter, Andreas; Parker, Quentin A.; Lykou, Foteini; Zijlstra, Albert A.; Guerrero, Martín A. (1 September 2021), "The Remnant and Origin of the Historical Supernova 1181 AD", The Astrophysical Journal Letters (in German), 918 (2): L33, arXiv:2105.12384, Bibcode:2021ApJ...918L..33R, doi:10.3847/2041-8213/ac2253, hdl:10261/255617, ISSN 2041-8205, S2CID 235195784, retrieved 8 November 2021

. Robert Fisher, Pritom Mozumdar, and Gabriel Casabona. (2019). "Carbon Detonation Initiation in Turbulent Electron-degenerate Matter".The Astrophysical Journal, Volume 876, Number 1. DOI 10.3847/1538-4357/ab15d8.

. Golam Mortuza Hossain & Susobhan Mandal. (13 January 2022). "The methods of thermal field theory for degenerate quantum plasmas in astrophysical compact objects". Springer Journal, DOI: https://doi.org/10.1007/s41614-021-00062-0.

. Nadis, Steve (2 December 2019). "Black Hole Singularities Are as Inescapable as Expected". quantamagazine.org. Quanta Magazine. Retrieved 22 April 2020.

. Ajit Kumar Mehta, Alessandra Buonanno, Jonathan Gair, M. Coleman Miller, Ebraheem Farag, R. J. deBoer, M. Wiescher, and F. X. Timmes. (2022). " Observing Intermediate-mass Black Holes and the Upper Stellar-mass gap with LIGO and Virgo". The Astrophysical Journal, Volume 924, Number 1. DOI 10.3847/1538-4357/ac3130.

. Y. Yang, I. Bartos, G. Fragione, Z. Haiman, M. Kowalski, S. Márka, R. Perna, and H. Tagawa. (2022). ''Tidal Disruption on Stellar-mass Black Holes in Active Galactic Nuclei''. The Astrophysical Journal Letters, Volume 933, Number 2. DOI 10.3847/2041-8213/ac7c0b.

. Aoto Utsumi, Ken Ohsuga, Hiroyuki R. Takahashi, and Yuta Asahina. (2022). " Component of Energy Flow from Supercritical Accretion Disks Around Rotating Stellar Mass Black Holes". The Astrophysical Journal, Volume 935, Number 1. DOI: 10.3847/1538-4357/ac7eb8.

. Montgomery, Colin; Orchiston, Wayne; Whittingham, Ian (2009). "Michell, Laplace and the origin of the black hole concept". Journal of Astronomical History and Heritage. 12 (2): 90–96. Bibcode:2009JAHH...12...90M.

. Andrew, J. S. & Hamilton. (2020). General Relativity, Black Holes, Cosmology.

. Clery D (2020). "Black holes caught in the act of swallowing stars". Science. 367 (6477): 495. Bibcode:2020Sci...367..495C. doi:10.1126/science.367.6477.495. PMID 32001633. S2CID 210984462.

Downloads

Published

2023-01-07

How to Cite

Sabir Sadiq. (2023). Life Cycle of High Mass Star. American Scientific Research Journal for Engineering, Technology, and Sciences, 97(1), 11–29. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/9124

Issue

Section

Articles