Operation and Maintenance of Small-Scale Biogas Digesters: Scoping Review and Bibliometric Analysis of Literature

Authors

  • Mubarick Issahaku Regional Centre for Energy and Environmental Sustainability, University of Energy and Natural Resources, Sunyani – Ghana,Energy Technology Centre, School of Engineering, University for Development Studies, P. O. Box TL 1350, Tamale – Ghana
  • Nana Sarfo Agyemang Derkyi Energy Technology Centre, School of Engineering, University for Development Studies, P. O. Box TL 1350, Tamale – Ghana
  • Francis Kemausuor The Brew-Hammond Energy Center, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi – Ghana

Keywords:

Biogas, operations and maintenance, scoping review, real-time monitoring, bibliometric analysis, Scopus, VOSviewer

Abstract

Biogas technology has matured over the years and is gaining acceptance; however, challenges with optimum operation and maintenance of digesters are a massive hurdle for developing countries that threaten the successful adoption of the technology. The failures of biogas digesters leading to the low diffusion of the technology in developing countries have been attributed to several factors spanning from social to technical. This study employed a scoping review and bibliometric analysis to synthesize literature in the Scopus database to map and discuss scientific knowledge. The synthesized data suggest the need for real-time monitoring systems for the optimal operations and maintenance of small-scale biogas digesters. A bibliometric analysis with the VOSviewer software of the study suggested that there is limited research output from developing countries such as Ghana. It, therefore, necessitates the need for conscious commitments from stakeholders to invest resources to advance research to address the challenge. 

References

R. Alvarado, P. Ponce, R. Alvarado, K. Ponce, V. Huachizaca, and E. Toledo, “Sustainable and non-sustainable energy and output in Latin America: A cointegration and causality approach with panel data,” Energy Strateg. Rev., vol. 26, no. April, p. 100369, 2019, doi: 10.1016/j.esr.2019.100369.

R. L. Ibrahim and K. B. Ajide, “Disaggregated environmental impacts of non-renewable energy and trade openness in selected G-20 countries: the conditioning role of technological innovation,” Environmental Science and Pollution Research, vol. 28, no. 47. pp. 67496–67510, 2021, doi: 10.1007/s11356-021-15322-2.

P. Moodley and C. Trois, “Lignocellulosic biorefineries: the path forward,” Sustain. Biofuels, pp. 21–42, Jan. 2021, doi: 10.1016/B978-0-12-820297-5.00010-4.

J. Lelieveld, K. Klingmüller, A. Pozzer, R. T. Burnett, A. Haines, and V. Ramanathan, “Effects of fossil fuel and total anthropogenic emission removal on public health and climate,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 15, pp. 7192–7197, 2019, doi: 10.1073/pnas.1819989116.

D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strateg. Rev., vol. 24, pp. 38–50, Apr. 2019, doi: 10.1016/J.ESR.2019.01.006.

C. Kuamoah, “Renewable Energy Deployment in Ghana: The Hype, Hope and Reality,” Insight on Africa, vol. 12, no. 1, pp. 45–64, 2020, doi: 10.1177/0975087819898581.

L. Kochtcheeva, “Renewable Energy: Global Challenges,” Environ. Clim. Chang. Int. Relations, pp. 1–9, 2016.

M. M. Rahman, H. M. Faizal, A. Saat, and M. A. Wahid, “Higher initial costs for renewables electricity: Emission, water and job-creation benefits offset the higher costs,” Proc. Int. Conf. Ind. Eng. Oper. Manag., vol. 2019, no. MAR, pp. 1372–1381, 2019.

IEA, “Global Energy Review 2019: Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021,” Glob. Energy Rev. 2019, 2020, doi: 10.1787/90c8c125-en.

P. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresour. Technol., vol. 83, no. 83, pp. 37–64, 2002.

P. McKendry, “Energy production from biomass (part 1): Overview of biomass,” Bioresour. Technol., vol. 83, no. 1, pp. 37–46, 2002, doi: 10.1016/S0960-8524(01)00118-3.

P. Ronald F and R. E. Hicks, “Encyclopedia of Physical Science and Technology,” Third., Massachusetts, 2003.

IRENA, “Bioenergy,” 2015. [Online]. Available: https://www.irena.org/bioenergy. [Accessed: 22-Feb-2021].

IEA, “Outlook for biogas and biomethane. Prospects for organic growth. World Energy Outlook Special Report.,” 2020.

Q. Zhang, J. Hu, and D. J. Lee, “Biogas from anaerobic digestion processes: Research updates,” Renew. Energy, vol. 98, pp. 108–119, 2016, doi: 10.1016/j.renene.2016.02.029.

J. Twidell and W. Tony, Renewable Energy Resources, Third. London and New York: Routledge Taylor and Francis Group, 2015.

M. Tabatabaei and H. Ghanavati, Biogas Fundamentals, Process and operation. Switzerland: Springer, 2018.

G. M. Shah et al., “Anaerobic degradation of municipal organic waste among others composting techniques improves N cycling through waste-soil-plant continuum,” J. Soil Sci. Plant Nutr., vol. 17, no. 2, pp. 529–542, 2017, doi: 10.4067/S0718-95162017005000038.

F. Xu, Y. Li, X. Ge, L. Yang, and Y. Li, “Anaerobic digestion of food waste – Challenges and opportunities,” Bioresour. Technol., vol. 247, pp. 1047–1058, 2018, doi: 10.1016/j.biortech.2017.09.020.

F. G. y L. A. B. O. Paredes, “Ciencias Revista Científica,” Master Sci. Thesis, KTH Chem. Eng. Technol., p. 1, 2012.

G. E. Agga et al., “Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes,” Antibiotics, vol. 11, no. 3, p. 391, 2022, doi: 10.3390/antibiotics11030391.

J. L. Linville, Y. Shen, M. M. Wu, and M. Urgun-Demirtas, “Current State of Anaerobic Digestion of Organic Wastes in North America,” Curr. Sustain. Energy Reports, vol. 2, no. 4, pp. 136–144, 2015, doi: 10.1007/s40518-015-0039-4.

F. Kemausuor, M. S. Adaramola, and J. Morken, “A Review of Commercial Biogas Systems and Lessons for Africa,” Energies, vol. 11, no. 11, pp. 1–21, 2018, doi: 10.3390/en11112984.

B. Amigun and H. Von Blottnitz, “Capacity-cost and location-cost analyses for biogas plants in Africa,” Resour. Conserv. Recycl., vol. 55, no. 1, pp. 63–73, 2010, doi: 10.1016/j.resconrec.2010.07.004.

E. C. Ministry of Energy, “Ghana Renewable Energy Master Plan,” 2019.

E. J. L. Chappin and A. Ligtvoet, “Transition and transformation?: A bibliometric analysis of two scienti fi c networks researching socio-technical change $,” vol. 30, pp. 715–723, 2014, doi: 10.1016/j.rser.2013.11.013.

W. Zhou, A. Kou, J. Chen, and B. Ding, “A retrospective analysis with bibliometric of energy security in 2000-2017,” Energy Reports, vol. 4, pp. 724–732, 2018, doi: 10.1016/j.egyr.2018.10.012.

H. B. Adedayo, S. A. Adio, and B. O. Oboirien, “Energy research in Nigeria?: A bibliometric analysis,” Energy Strateg. Rev., vol. 34, no. March, p. 100629, 2021, doi: 10.1016/j.esr.2021.100629.

Z. Munn, M. D. J. Peters, C. Stern, C. Tufanaru, A. Mcarthur, and E. Aromataris, “Systematic review or scoping review?? Guidance for authors when choosing between a systematic or scoping review approach,” pp. 1–7, 2018.

S. Pirri, V. Lorenzoni, and G. Turchetti, “Scoping review and bibliometric analysis of Big Data applications for Medication adherence?: an explorative methodological study to enhance consistency in literature,” pp. 1–23, 2020.

G. Ferrari;, A. Pezzuolo;, A.-S. Nizami;, and F. Marinello;, “Bibliometric Analysis of Trends in Biomass for Bioenergy Research,” Energies, vol. 13, 2020.

F. J. Martínez-l and C. Nicolás, “Fifty years of the European Journal of Marketing?: a bibliometric analysis,” vol. 52, no. 1160286, pp. 439–468, 2017, doi: 10.1108/EJM-11-2017-0853.

A. Mohameda;, A. Z. A. Razaka;, and Z. Abdullaha, “Most-cited research publications on educational leadership and management: A Bibliometric analysis,” Int. Online J. Educ. Leadersh., vol. 4, no. 2, pp. 33–50, 2020.

P. Ahi and C. Searcy, “An analysis of metrics used to measure performance in green and sustainable supply chains,” J. Clean. Prod., vol. 86, pp. 360–377, 2015, doi: 10.1016/j.jclepro.2014.08.005.

Z. H. Munim, M. Dushenko, V. J. Jimenez, M. H. Shakil, and M. Imset, “Big data and artificial intelligence in the maritime industry?: a bibliometric review and future research directions,” Marit. Policy Manag., vol. 00, no. 00, pp. 1–21, 2020, doi: 10.1080/03088839.2020.1788731.

V. Moosa and M. Shareefa, “Science mapping the most-cited publications on workplace learning,” J. Work. Learn., vol. 32, no. 4, pp. 259–272, 2020, doi: 10.1108/JWL-10-2019-0119.

P. Z. Cacchione, “The Evolving Methodology of Scoping Reviews,” 2016, doi: 10.1177/1054773816637493.

A. C. Tricco et al., “PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation,” Ann. Intern. Med., vol. 169, no. 7, pp. 467–473, 2018, doi: 10.7326/M18-0850.

H. Arksey and L. O’Malley, “Scoping studies: Towards a methodological framework,” Int. J. Soc. Res. Methodol. Theory Pract., vol. 8, no. 1, pp. 19–32, 2005, doi: 10.1080/1364557032000119616.

N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. Marc, “How to conduct a bibliometric analysis?: An overview and guidelines,” J. Bus. Res., vol. 133, no. March, pp. 285–296, 2021, doi: 10.1016/j.jbusres.2021.04.070.

A. Perianes-Rodriguez, L. Waltman, and N. J. van Eck, “Constructing bibliometric networks: A comparison between full and fractional counting,” J. Informetr., vol. 10, no. 4, pp. 1178–1195, Nov. 2016, doi: 10.1016/J.JOI.2016.10.006.

J. Y. Park and Z. Nagy, “Data on the interaction between thermal comfort and building control research,” Data Br., vol. 17, pp. 529–532, 2018, doi: 10.1016/j.dib.2018.01.033.

“VOSviewer - Visualizing scientific landscapes.” [Online]. Available: https://www.vosviewer.com/. [Accessed: 08-Jan-2022].

A. Kleyböcker, T. Lienen, M. Liebrich, M. Kasina, M. Kraume, and H. Würdemann, “Application of an early warning indicator and CaO to maximize the time-space-yield of an completely mixed waste digester using rape seed oil as co-substrate,” Waste Manag., vol. 34, no. 3, pp. 661–668, 2014, doi: 10.1016/j.wasman.2013.11.011.

I. Angelidaki, L. Ellegaard, and B. K. Ahring, “Compact automated displacement gas metering system for measurement of low gas rates from laboratory fermentors,” Biotechnol. Bioeng., vol. 39, no. 3, pp. 351–353, 1992, doi: 10.1002/bit.260390314.

R. Arthur and P. A. Scherer, “Monitoring dissolved active trace elements in biogas plants using total reflection X-ray fluorescence spectrometry,” X-Ray Spectrom., vol. 49, no. 5, pp. 560–571, 2020, doi: 10.1002/xrs.3151.

L. Castro et al., “Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality,” Bioresour. Technol., vol. 239, pp. 311–317, 2017, doi: 10.1016/j.biortech.2017.05.035.

D. DIeudonne and H. Shima, “Effectiveness of applying IoT to improve biogas digesters in Rwanda,” Proc. 4th IEEE Int. Conf. Appl. Syst. Innov. 2018, ICASI 2018, no. 3, pp. 441–444, 2018, doi: 10.1109/ICASI.2018.8394279.

C. Huck et al., “Multiparameter sensor chip with barium strontium titanate as multipurpose material,” Electroanalysis, vol. 26, no. 5, pp. 980–987, 2014, doi: 10.1002/elan.201400076.

V. S. Kshirsagar and P. M. Pawar, “Design optimization of biogas digester for performance improvement and fault minimization,” Environ. Technol. Rev., vol. 7, no. 1, pp. 95–105, 2018, doi: 10.1080/21622515.2018.1466915.

C. H. Pham, J. M. Triolo, and S. G. Sommer, “Predicting methane production in simple and unheated biogas digesters at low temperatures,” Appl. Energy, vol. 136, pp. 1–6, 2014, doi: 10.1016/j.apenergy.2014.08.057.

D. Polag, L. C. Krapf, H. Heuwinkel, S. Laukenmann, J. Lelieveld, and F. Keppler, “Stable carbon isotopes of methane for real-time process monitoring in anaerobic digesters,” Eng. Life Sci., vol. 14, no. 2, pp. 153–160, 2014, doi: 10.1002/elsc.201200201.

A. Stockl and H. Oechsner, “Near-infrared spectroscopic online monitoring of process stability in biogas plants,” Eng. Life Sci., vol. 12, no. 3, pp. 295–305, 2012, doi: 10.1002/elsc.201100065.

A. Stockl and F. Lichti, “Near-infrared spectroscopy (NIRS) for a real time monitoring of the biogas process,” Bioresour. Technol., vol. 247, no. June, pp. 1249–1252, 2018, doi: 10.1016/j.biortech.2017.09.173.

X. Wang et al., “Evaluation of artificial neural network models for online monitoring of alkalinity in anaerobic co-digestion system,” Biochem. Eng. J., vol. 140, no. August, pp. 85–92, 2018, doi: 10.1016/j.bej.2018.09.010.

A. J. Ward et al., “Real time monitoring of a biogas digester with gas chromatography, near-infrared spectroscopy, and membrane-inlet mass spectrometry,” Bioresour. Technol., vol. 102, no. 5, pp. 4098–4103, 2011, doi: 10.1016/j.biortech.2010.12.052.

C. F. Werner et al., “Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor,” Phys. Status Solidi Appl. Mater. Sci., vol. 208, no. 6, pp. 1340–1344, 2011, doi: 10.1002/pssa.201001141.

H. Abu Qdais, K. Bani Hani, and N. Shatnawi, “Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm,” Resour. Conserv. Recycl., vol. 54, no. 6, pp. 359–363, 2010, doi: 10.1016/j.resconrec.2009.08.012.

M. Osei-Marfo, E. Awuah, and N. K. de Vries, “Biogas technology diffusion and shortfalls in the central and greater Accra regions of Ghana,” Water Pract. Technol., vol. 13, no. 4, pp. 932–946, 2018, doi: 10.2166/wpt.2018.100.

L. Zheng et al., “What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry??”

X. Zuzhang, Domestic biogas in a changing China. .

A. Segun, N. Ali, I. Ahmad, and M. Asif, “Prospects of China ’ s biogas?: Fundamentals , challenges and considerations,” vol. 6, no. 189, pp. 2973–2987, 2020, doi: 10.1016/j.egyr.2020.10.027.

D. Thrän, K. Schaubach, S. Majer, and T. Horschig, “Governance of sustainability in the German biogas sector — adaptive management of the Renewable Energy Act between agriculture and the energy sector,” 2020.

E. Winquist, M. Van Galen, S. Zielonka, P. Rikkonen, D. Oudendag, and L. Zhou, “Expert Views on the Future Development of Biogas Business Branch in Germany , The Netherlands , and Finland until 2030,” 2021.

S. Jain, “Market Report - Germany,” 2022.

V. Bharti, “India’s programmes and incentives being implemented to support biogas,” 2019.

US-EPA, “Funding On-Farm Anaerobic Digestion,” 2012.

USDA, “Biogas Opportunities Roadmap,” 2014.

USDA, “USDA Offers Funding To Help Farmers Turn Manure into Energy.” [Online]. Available: https://www.usda.gov/media/blog/2010/11/18/usda-offers-funding-help-farmers-turn-manure-energy. [Accessed: 09-Apr-2022].

X. Zhang, R. C. Estoque, H. Xie, Y. Murayama, and M. Ranagalage, “Bibliometric analysis of highly cited articles on ecosystem services,” PLoS One, vol. 14, no. 2, pp. 1–16, 2019, doi: 10.1371/journal.pone.0210707.

Scopus, “Scopus - Sources,” Elsevier, 2020. [Online]. Available: https://www.scopus.com/sources.uri. [Accessed: 13-Apr-2022].

S. R. Group, “Scimago Journal & Country Rank,” Scimago Ranking, 2020. [Online]. Available: https://www.scimagojr.com/. [Accessed: 12-Apr-2022].

M. Mahama, N. S. A. Derkyi, and C. M. Nwabue, “Challenges of renewable energy development and deployment in Ghana: perspectives from developers,” GeoJournal, vol. 0123456789, no. Zahedi 2010, 2020, doi: 10.1007/s10708-019-10132-z.

Downloads

Published

2022-09-10

How to Cite

Mubarick Issahaku, Nana Sarfo Agyemang Derkyi, & Francis Kemausuor. (2022). Operation and Maintenance of Small-Scale Biogas Digesters: Scoping Review and Bibliometric Analysis of Literature. American Scientific Research Journal for Engineering, Technology, and Sciences, 89(1), 184–215. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/7884

Issue

Section

Articles