Characteristics Analysis of (6G) Wireless Networks: Review, Vision, Challenges

  • Najim Abdallah Jazea Department of Computer Techniques Engineering, Alhikma University College, Baghdad, Iraq.
  • Abdullsalam M. Saeed Department of Computer Techniques Engineering, Alhikma University College, Baghdad, Iraq.
Keywords: wireless networks, beyond 5G, 6G, satellite networks, terahertz, cell less architecture

Abstract

In the midst of the revolution in wireless communications, specialists expect that the current 5G cellular networks will not meet the rapid technical requirements of smart terminals broadly in the next few years. Between 2027 and 2030the expected, a new framework for wireless communication (6G) with the aid of artificial intelligence is expected to be launched. This paper presents a vision and analysis of the upcoming network architecture (6G), The most important technical challenges and possible solutions for (6G).

References

Alsharif, M.H.; Nordin, R. (2017). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommun. Syst. 64, 617–637.

Albreem, M.A.; Alsharif, M.H.; Kim, S. (2020). A Robust Hybrid Iterative Linear Detector for Massive MIMO Uplink Systems. Symmetry, 12, 306.

Mohammed, S.L.; Alsharif, M.H.; Gharghan, S.K.; Khan, I.; Albreem, M. (2019). Robust Hybrid Beamforming Scheme for Millimeter-Wave Massive-MIMO 5G Wireless Networks. Symmetry, 11, 1424.

Cacciapuoti, A. S., Sankhe, K., Caleffi, M., & Chowdhury, K. R. (2018). Beyond 5G: THz-based medium access protocol for mobile heterogeneous networks. IEEE Communications Magazine, 56(6), 110-115.

Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6g wireless communications: Vision and potential techniques. IEEE Network, 33(4), 70-75.

Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.-J.A. (2019). The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 57, 84–90.

Kalbande, D., Haji, S., & Haji, R. (2019). 6G-Next Gen MobileWireless Communication Approach. In 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 1-6).

Bastug, E., Bennis, M., Médard, M., & Debbah, M. (2019). Toward interconnected virtual reality: Opportunities, challenges, and enablers. IEEE Communications Magazine, 55(6), 110-117.

Yajun, Z., Guanghui, Y., & Hanqing, X. U. (2021). 6G mobile communication networks: vision, challenges, and key technologies. SCIENTIA SINICA Informationis, 49(8), 963-987.

Zong, B., Fan, C., Wang, X., Duan, X., Wang, B., & Wang, J. (2019). 6G Technologies: Key Drivers, Core Requirements, System Architectures, and Enabling Technologies. IEEE Vehicular Technology Magazine, 14(3), 18-27.

Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6g wireless communications: Vision and potential techniques. IEEE Network, 33(4), 70-75.

Khutey, R., Rana, G., Dewangan, V., Tiwari, A., & Dewamngan, A. (2017). Future of wireless technology 6G & 7G. International Journal of Electrical and Electronics Research, 3(2), 583-585.

Kalbande, D., Haji, S., & Haji, R. (2019). 6G-Next Gen Mobile Wireless Communication Approach. In 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 1-6).

Bastug, E., Bennis, M., Médard, M., & Debbah, M. (2020). Toward interconnected virtual reality: Opportunities, challenges, and enablers. IEEE Communications Magazine, 55(6), 110-117.

Yajun, Z., Guanghui, Y., & Hanqing, X. U. (2019). 6G mobile communication networks: vision, challenges, and key technologies. SCIENTIA SINICA Informationis, 49(8), 963-987.

T. J. O’Shea and J. Hoydis, (2019). “An introduction to machine learning communications systems,” availableonline arXiv:1702.00832.

H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. (2020). Sidiropoulos, “Learning to optimize: Training deepneural networks for wireless resource management,” available online arXiv:1705.09412,

C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo, (2017). “Machine learning paradigms fornext-generation wireless networks,” IEEE Wireless Communications, vol. 24, no. 2, pp. 98–105.

M. Bkassiny, Y. Li, and S. K. Jayaweera, (2020). “A survey on machine-learning techniques in cognitive radios,”IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1136–1159.

N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and K. Mizutani, (2021). “The deep learningvision for heterogeneous network traffic control: Proposal, challenges, and future perspective,” IEEE Wireless Communications, vol. 24, no. 3, pp. 146–153.

Dang, S., Amin, O., Shihada, B., & Alouini, M. S. (2019). From a Human-Centric Perspective: What Might 6G Be?. arXiv preprint arXiv:1906.00741.

Strinati, E. C., Barbarossa, S., Gonzalez-Jimenez, J. L., Ktenas, D., Cassiau, N., Maret, L., & Dehos, C. (2019). 6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Vehicular Technology Magazine, 14(3), 42-50.

Zaidi, A. A., Baldemair, R., Moles-Cases, V., He, N., Werner, K., & Cedergren, A. (2018). OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN. IEEE Communications Standards Magazine, 2(2), 78-83.

Lee, Y. L., Qin, D., Wang, L. C., & Hong, G. (2019). 6G Massive Radio Access Networks: Key Issues, Technologies, and Future Challenges. arXiv preprint arXiv:1910.10416.

Tariq, F., Khandaker, M., Wong, K. K., Imran, M., Bennis, M., & Debbah, M. A (2021) speculative study on 6G. arXiv preprint arXiv:1902.06700.

Published
2022-05-08
Section
Articles