Impacts of Selenium Foliar Biofortification on the Biochemical Composition and Grain Yield of Rice Cultivars

Authors

  • Danilo Pereira Ramos Doctor in Plant Production, ORCID: https://orcid.org/0000-0002-6559-6218, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Guillermo Arturo Herrera Chan Doctor in Plant Production, ORCID: https://orcid.org/0000-0003-1093-4125, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Taynar Coelho de Oliveira Tavares Doctor in Plant Production, ORCID: https://orcid.org/0000-0002-2202-9264, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Manoel Mota dos Santos Doctor in Phytotechnic, ORCID: https://orcid.org/0000-0002-6984-1399, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Sergio Alves de Sousa Doctor in Plant Production, ORCID: https://orcid.org/0000-0002-0481-9609, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Geovane Macedo Soares Bachelor of Engineering in Agronomy, ORCID: https://orcid.org/0000-0003-2857-9539, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Danilo Alves Veloso Doctor in Plant Production, ORCID: https://orcid.org/0000-0002-9668-0009, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Wanessa Rocha de Souza Doctor in Plant Production, ORCID: https://orcid.org/0000-0002-4740-3451, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Antônio Carlos Francisco de Oliveira Bachelor of Engineering in Agronomy, ORCID: https://orcid.org/0000-0001-6306-849X, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Natalia Martins Veloso Academic of Agronomic Engineering, ORCID: https://orcid.org/0000-0002-4689-6768, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Vitor Stefanello Fernandes Master in Vegetable Production, ORCID: https://orcid.org/0000-0002-4697-3313, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Nivaldo Ribeiro Macena Jr Bachelor of Engineering in Agronomy, ORCID: https://orcid.org/0000-0002-5158-8874, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Vanessa Silveira Jorge Master in Agroenergy, ORCID: https://orcid.org/0000-0002-3573-4800, Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.
  • Rodrigo Ribeiro Fidelis Doctor in Phytotechnics, ORCID: https://orcid.org/0000-0002-7306-2662), Federal University of Tocantins, Street Badejós, Lot 7, Ranches 69/72, Countryside, Gurupi, 77404-970, Tocantins-Brazil.

Keywords:

Oryza sativa L, grain yield, fertilization, food composition, food security

Abstract

Selenium Se is an essential micronutrient for humans and animals linked to important biological functions in the body, where its deficiency has been associated with serious diseases. Rice is essential in feeding more than half of the world's population. Some studies show beneficial effects of Se in higher plants. Thus, the objective of this work was to determine the effect of leaf Se doses on biofortification, agronomic characteristics and biochemical characteristics of the grains of two irrigated rice cultivars. The factors under study were five doses of Se (0, 30, 60, 90 and 120 g ha-1) using as sodium selenate source (Na2SeO4), and two rice cultivars (IRGA-424 and IRGA-426). The leaf application of Na2SeO4 allowed the biofortification of rice grains with Se, however, it affected its yield and some biochemical components. The cultivar IRGA-426 Se shows superior because it allows a higher concentration of Se in the grains, presents higher yield and better nutritional content. The cultivar IRGA-426 with the dose 60 g ha-1 Se was the viable combination to increase the content of Se in the grains, which may result in benefits for the health and food safety of the population.

References

Rayman, M. P. (2012). Selenium and human health. Lancet, 379, 1256-1268.

White, L., & Castellano, S. (2016). The role of selenium in human evolution. In D.L. Hatfield, M.J. Berry, & V.N. Gladyshev (Eds.), Selenium: its molecular biology and role in human health (4th ed) (pp. 59-71). Berlin, Germany: Springer.

White, P.J., & Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182, 49-84.

Roman, M., Jitaru, P., & Barbante, C. (2014). Selenium biochemistry and its role for human health. Metallomics, 6, 25-54.

Pilon-Smits, E., & Quinn, C. (2010). Selenium metabolism in plants. In R. Hell, & R.R. Mendel (Eds.), Cell biology of metal and nutrients (pp. 225-241). Berlin, Germany: Springer.

Boldrin, P.F., Faquin, V., Ramos, S.J., Boldrin, K.V.F., Avila, F.W., & Guilherme, L.R.G. (2013). Soil and foliar application of selenium in rice biofortification. Journal of Food Composition and Analysis, 31, 238-244.

Djanaguiraman, M., Prasad, P.V.V., & Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48, 999-1007.

Ramos, S.J., Rutzke, M.A., Haynes, R.J., Faquin, V., Guilherme, L.R.G., & Li, L. (2011). Selenium accumulation in lettuce germplasm. Planta, 233, 649-660.

Zhao, F.J, Su, Y.H, Dunham, S.J, Rakszegi, M, Bedo, Z, McGrath, S.P, & Shewry, P.R. (2009). Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of Cereal Science, 49, 290-295.

Schiavon, M., Pilon, M., Malagoli, M., Pilon‐Smits, E.A.H. (2015). Exploring theimportance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Frontiers in Plant Science, 6, 2.

Carvalho, S.M.P., & Vasconcelos, M.W. (2013). Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Research International, 54, 961–971.

Puccinelli, M., Malorgio, F., & Pezzarossa, B. (2017). Selenium enrichment of horticultural crops. Molecules, 22, 933.

Deng, X., Liu, K., Li, M., Zhang, W., Zhao, X., Zhao, Z., & Liu, X. (2017). Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at diferente stages. Field Crops Research, 211, 165-171.

Ramos, D.P., Tavares, T.C.O., Sousa, S.A., Nascimento, V.L., Martinez, R.A.S., Chagas Junior, A.F., Fidelis, R.R. (2019). Agronomic biofortification of cowpea with selenium by foliar fertilization: effect of doses in three cultivars. Journal of Plant Nutrition, 43, 538-547.

Fordyce, F.M. (2012). Selenium defciency and toxicity in the environment. Essentials of Medical Geology, 16, 375-416.

Boaretto, A.E., Moraes, M.F. (2010). Contribuição da nutrição adequada para qualidade dos alimentos. In Prado, R.M. et al. (Eds.), Nutrição de plantas: diagnose foliar em hortaliças (pp. 9-44). Jaboticabal, Brasil: FCAV/FAPESP/CAPES FUNDUNESP.

Barbosa-Filho, M.P., Fonseca, J.R. (1994). Importância da adubação na qualidade do arroz. In Sá, M.E., Buzetti, S. (Eds.), Importância da adubação na qualidade dos produtos agrícolas (pp. 217-231). São Paulo, Brasil: Ícone.

Combs, G.F. (2001). Selenium in global food systems. British Journal of Nutrition, 85, 517-547.

Dhital, S., Dabit, L., Zhang, B., Flanagan, B., & Shrestha, A.K. (2015). In vitro digestibility and physicochemical properties of milled rice. Food Chemistry, 172, 757-765.

Walter, M., Marchezan, E., & Avila, L.A. (2008). Arroz: Composição e Características Nutricionais. Ciência Rural, 38, 1184-1192.

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711-728.

Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA (2014). Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos (4. ed.). Brasília, Brazil: Embrapa.

Boldrin, P.F., Faquin, V., Ramos, S.J., Guilherme, L.R.G., Bastos, C.E.A., Carvalho, G.S., & Costa, E.T. de S. (2012). Selenato e selenito na produção e biofortificação agronômica com selênio em arroz. Pesquisa Agropecuária Brasileira, 47, 831-837.

Bohrer, D., Beckera, E., do Nascimento, P.C., Dessuy, M., & de Carvalho, L.M. (2007). Comparison of graphite furnace and hydride generation atomic absorption spectrometry for the determination of selenium status in chicken meat. Food Chemistry, 104, 868–875.

Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA (2009). Manual de Análises Químicas de Solos, Plantas e Fertilizantes (2nd ed.). Brasília, Brazil: Embrapa.

Nascimento, V.L., Rauber, W.A., Silva, G.S., Siebeneichler, S.C., Fidelis, R.R. (2019). Hydrogel effects in biochemical composition of soybean grains cultivated under water déficit in Brazilian Cerrado. Communications in Plant Sciences, 9, 13-19.

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.

Friedman, M. (2004). Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. Journal of agricultural and food Chemistry, 52, 385-406.

MacRae, J.C., Smith, D., McCready, R.M. (1974). Starch estimation in leaf tissue - acomparison of results using six methods. Journal of the Science of Food and Agriculture, 25, 1465-1469.

Bradford, M.M. (1976). A rapid and sensitive method for the qualification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 7, 248-254.

R Core Team. R: A language and environment for statistical computing (2015). R Foundation for Statistical Computing. Vienna, Austria.

Johnson, J.B., & Omland, K.S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19, 101-108.

Pinheiro, B.da.S. (2006). Características morfológicas da planta relacionadas à produtividade. In A.B,dos. Santos, L.F. Stone, & N.R.de.A. Vieira (Eds.), A cultura do arroz no Brasil (pp. 209-256). Santo Antônio de Goiás, Brasil: Embrapa.

Freitas, J.G.de, Cantarella, H., Salomon, M.V., Malavolta, V.M.A., Castro, L.H.S.M.de, Gallo, P.B., & Azzini, L.E. (2007). Produtividade de cultivares de arroz irrigado resultante da aplicação de doses de nitrogênio. Bragantia, 66, 317-325.

Marchezan, E., Martin, T.N., Santos, F.M., & Camargo, E.R. (2005). Análise de coeficiente de trilha para os componentes de produção em arroz. Ciência Rural, 35, 1027-1033.

Zhu, Y.G., Pilon-Smits, E.A., Zhao, F.J., Williams, P.N., & Meharg, A.A. (2009). Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 14, 436-442.

Sors, T.G., Ellis, D.R., & Salt, D.E. (2005). Selenium uptake, translocation assimilation and metabolic fate in plants. Photosynthesis Research, 86, 373-389.

Rani, N., Dhillon, K.S., & Dhillon, S.K. (2005). Critical levels of selenium in different crops grown in an alkaline silty loam soil treated with selenite-Se. Plant Soil, 277, 367-374.

Ministério da Agricultura, Pecuária e Abastecimento - MAPA (2017). Secretaria de Política Agrícola. Projeções do agronegócio. Brasil 2016/17 a 2026/27. Projeções de Longo Prazo. Brasília, Brasil: Mapa.

USDA (United States Department of Agriculture). (2006). Dietary reference intakes: The essential Guide to nutrient requirements. https://www.nal.usda.gov/sites/default/files/fnic_uploads/DRIEssentialGuideNutReq.pdf./ Accesse 25 July 2017.

Boldrin, P.F., de Figueiredo, M.A., Yang, Y., Luo, H., Giri, S., Hart, J.J., Faquin, V., Guilherme, L.R.G., Thannhauser, T.W., Li, L. (2016). Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiol. Plant, 158, 80-91.

Lara, T.S., Lima Lessa, J.H., Souza, K.R.D., Corguinha, A.P.B., Martins, F.A.D., Lopes, G., Guilherme, L.R.G. (2019). Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. Journal of Food Composition and Analysis, 81, 10-18.

Zavareze, E.R., Hala, S.L.M., Pereira, J.M., Raduns, A.L., Elias, M.C., Dias, A.R.G. (2009). Chemical characterization and extraction yield of rice starch with different amylose contents. Brazilian Journal of Food Technology, 11, 24-30

Brown, T.A., Shrift, A. (2008). Selenium: toxicity and tolerance in higher plants. Biological Reviews, 5, 59-84.

Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed). Cambridge, England: Academic Press.

Downloads

Published

2022-05-15

Issue

Section

Articles