Physico-chemical Parameters and Species’ Distribution Patterns of Extremophilic Bacteria in Kitagata and Ihimbo Hot Springs in South Western Uganda

Authors

  • Andrew Nabagye department of biology, faculty of science, mbarara university of science and technology
  • Jane Yatuha(Phd) department of biology, faculty of science, mbarara university of science and technology

Keywords:

Extremophiles, Thermopiles, Hot springs

Abstract

Extremophiles are organisms that live in extreme environmental conditions of pressure, temperature, salinity that are considered uninhabitable in comparison to the physico-chemical characteristics of the normal environment of human cells. Extremophiles include thermophiles, barophiles, acidophiles and alkaliphiles. Extensive studies of extremophiles ecology, physiology, and molecular biology have yielded valuable information about life processes with a number of important industrial applications. The study sought to profile the thermophilic bacteria present in the less studied two hot springs of Kitagata and Ihimbo. Water samples were collected in a sterile thermo flask and taken to the laboratory, and then the colonial and biochemical tests were done and in comparison to the Bergey’s Manual of Determinative Bacteriology nine species were identified. The most common were Bacillus spp, Klebsiella spp, Escherichia coli, and Enterobacter spp.  Identification of these thermophile bacteria has become a key step in mapping potential sources of the sought thermo-stable enzymes and also empowered future microbial ecology research and bio-discovery of thermo-stable enzymes that are important in the biotechnological breakthrough.

References

B. W. Fouke, ‘Hot-spring Systems Geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA’, Sedimentology, vol. 58, no. 1, pp. 170–219, Jan. 2011.

L. J. Rothschild and R. L. Mancinelli, ‘Life in extreme environments’, Nature, vol. 409, no. 6823, pp. 1092–1101, Feb. 2001.

P. H. Rampelotto, ‘Extremophiles and extreme environments’, Life, vol. 3, no. 3. Multidisciplinary Digital Publishing Institute, pp. 482–485, 2013.

A. Ebrahimpour and A. Kariminik, ‘Isolation, characterization and molecular identification of protease producing bacteria from Tashkooh mountain located in Ahvaz, Iran’, Int. J. Life Sci., vol. 9, no. 2, pp. 39–42, Feb. 2015.

J. L. Jardine, ‘DIVERSITY AND BIOTECHNOLOGY APPLICATIONS OF THERMOPHILIC BACTERIA FROM HOT-SPRING WATER IN LIMPOPO SOUTH AFRICA RELATING TO WASTEWATER BIOREMEDIATION AND WATER SAFETY’, 2017.

R. Jaenicke, H. Schurig, N. Beaucamp, and R. Ostendorp, ‘Structure and Stability of Hyperstable Proteins: Glycolytic Enzymes From Hyperthermophilic Bacterium Thermotoga Maritima’, Adv. Protein Chem., vol. 48, pp. 181–269, Jan. 1996.

S. Kumar and R. Nussinov, ‘How do thermophilic proteins deal with heat?’, Cell. Mol. Life Sci. C., vol. 58, no. 9, pp. 1216–1233, 2001.

T. Han et al., ‘Effects of tetracycline on growth, oxidative stress response, and metabolite pattern of ryegrass’, J. Hazard. Mater., vol. 380, p. 120885, 2019.

B. T. Mohammad, H. I. Al Daghistani, A. Jaouani, S. Abdel-Latif, and C. Kennes, ‘Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes’, Int. J. Microbiol., vol. 2017, 2017.

V. Kato, ‘GEOTHERMAL EXPLORATION IN UGANDA – STATUS REPORT’, 2017.

G. Bahati and J. F. Natukunda, ‘STATUS OF GEOTHERMAL EXPLORATION AND DEVELOPMENT IN UGANDA’, 2010.

J. Omara, T. P. Ekeya, and J. F. Hawumba, ‘Phylogenetic analysis based on 16S rRNA gene of a thermophilic protease-secreting Bacillus gelatini-TPNK-3 isolate from Kiteezi Landfill, Uganda’, Polish J. Microbiol., vol. 61, no. 3, pp. 227–231, 2012.

C. C. Rath and V. R. Subramanyam, ‘Isolation of thermophilic bacteria from hot springs of Orissa, India’, Geobios, vol. 25, no. 2–3, pp. 113–119, 1998.

S. Derso, A. Beyene, M. Getachew, and A. Ambelu, ‘Ecological status of hot springs in eastern Amhara region: Macroinvertebrates diversity’, Am. Sci. Res. J. Eng. Technol. Sci., vol. 14, no. 2, pp. 1–22, 2015.

J. F. Hawumba, J. Theron, and V. S. Brözel, ‘Thermophilic protease-producing Geobacillus from Buranga hot springs in Western Uganda’, Curr. Microbiol., vol. 45, no. 2, pp. 144–150, 2002.

‘(PDF) Identification of appropriate sample and culture method for isolation of new thermophilic bacteria from hot spring’. [Online]. Available: https://www.researchgate.net/publication/267381643_Identification_of_appropriate_sample_and_culture_method_for_isolation_of_new_thermophilic_bacteria_from_hot_spring. [Accessed: 22-Jan-2022].

B. D. Jett, K. L. Hatter, M. M. Huycke, and M. S. Gilmore, ‘Simplified agar plate method for quantifying viable bacteria’, Biotechniques, vol. 23, no. 4, pp. 648–650, 1997.

B. D. Jett, K. L. Hatter, M. M. Huycke, and M. S. Gilmore, ‘Simplified agar plate method for quantifying viable bacteria’, Biotechniques, vol. 23, no. 4, pp. 648–650, 1997.

H. N. Akmar, I. Asma, B. Venugopal, L. Y. Latha, and S. Sasidharan, ‘Identification of appropriate sample and culture method for isolation of new thermophilic bacteria from hot spring’, African J. Microbiol. Res., vol. 5, no. 3, pp. 217–221, 2011.

N. D. LEVINE, ‘Buchanan, R. E. & Gibbons, N. E., eds. 1974. Bergey’s Manual of Determinative Bacteriology. 8th ed. Williams & Wilkins Co., Baltimore, Md. 21202. xxvi + 1246 pp. $45.00’, J. Protozool., vol. 22, no. 1, pp. 7–7, Feb. 1975.

D. H. (David H. Bergey and J. G. Holt, ‘Group 5 Facultatively Anaerobic Gram-Negative Rods’, Bergey’s Man. Determ. Bacteriol., pp. 254–255, 2000.

I. Cann et al., ‘Thermophilic degradation of hemicellulose, a critical feedstock in the production of bioenergy and other value-added products’, Appl. Environ. Microbiol., vol. 86, no. 7, pp. e02296-19, 2020.

L. Sawle and K. Ghosh, ‘How do thermophilic proteins and proteomes withstand high temperature?’, Biophys. J., vol. 101, no. 1, pp. 217–227, 2011.

O. Takano, Y. Itoh, and S. Kusumoto, ‘Variation in Forearc Basin Configuration and Basin-filling Depositional Systems as a Function of Trench Slope Break Development and Strike-Slip Movement: Examples from the Cenozoic Ishikari–Sanriku-Oki and Tokai-Oki–Kumano-Nada Forearc Basins, Japan’, Mech. Sediment. Basin Form. - Multidiscip. Approach Act. Plate Margins, Aug. 2013.

L. P. Wackett, ‘Thermophiles and thermophilic enzymes: An annotated selection of World Wide Web sites relevant to the topics in Microbial Biotechnology’, Microb. Biotechnol., vol. 4, no. 6, p. 799, 2011.

C. S. Chan, K.-G. Chan, Y.-L. Tay, Y.-H. Chua, and K. M. Goh, ‘Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing’, Front. Microbiol., vol. 6, p. 177, 2015.

‘goha et al 2011 - Google Scholar’. [Online]. Available: https://scholar.google.com/scholar?q=goha+et+al+2011&hl=en&as_sdt=0&as_vis=1&oi=scholart. [Accessed: 23-Jan-2022].

A. C. Cihan, C. Cokmus, M. Koc, and B. Ozcan, ‘Anoxybacillus calidus sp. nov., a thermophilic bacterium isolated from soil near a thermal power plant’, Int. J. Syst. Evol. Microbiol., vol. 64, no. PART 1, pp. 211–219, 2014.

T. Aanniz et al., ‘Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils’, Brazilian J. Microbiol., vol. 46, pp. 443–453, 2015.

‘Taxonomy of the species Geobacillus icigianus Bryanskaya et al. 2015’. [Online]. Available: https://www.namesforlife.com/10.1601/tx.26422. [Accessed: 23-Jan-2022].

W. Zhu et al., ‘Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite’, Bioresour. Technol., vol. 102, no. 4, pp. 3877–3882, 2011.

A. Poli, I. Romano, P. Cordella, P. Orlando, B. Nicolaus, and C. C. Berrini, ‘Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy’, Extremophiles, vol. 13, no. 6, pp. 867–874, 2009.

J. R. Hall et al., ‘Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes’, Appl. Environ. Microbiol., vol. 74, no. 15, pp. 4910–4922, 2008.

T. D. Kim, ‘Bacterial hormone-sensitive lipases (bHSLs): Emerging enzymes for biotechnological applications’, 2017.

G. Saxena, R. N. Bharagava, G. Kaithwas, and A. Raj, ‘Microbial indicators, pathogens and methods for their monitoring in water environment’, J. Water Health, vol. 13, no. 2, pp. 319–339, 2015.

Y. R. Shtykova, M. Y. Suslova, V. V Drucker, and O. I. Belykh, ‘Microbiological water quality of Lake Baikal: a review’, Limnol. Freshw. Biol., pp. 210–217, 2019.

D. U. Bhusare and P. S. Wakte, ‘Microbiological and physiochemical attributes of hot water sulphur spring of Unkeshwar’, J. Exp. Sci., vol. 2, no. 4, 2011.

A. Giuliano, D. Bolzonella, P. Pavan, C. Cavinato, and F. Cecchi, ‘Co-digestion of livestock effluents, energy crops and agro-waste: feeding and process optimization in mesophilic and thermophilic conditions’, Bioresour. Technol., vol. 128, pp. 612–618, 2013.

A. Johansen et al., ‘Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso-and thermophilic conditions’, Waste Manag., vol. 33, no. 4, pp. 807–812, 2013.

J. K. Cole et al., ‘Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia’, Int. J. Syst. Evol. Microbiol., vol. 63, no. Pt_12, pp. 4675–4682, 2013.

S. R. Miller, C. Williams, A. L. Strong, and D. Carvey, ‘Ecological specialization in a spatially structured population of the thermophilic cyanobacterium Mastigocladus laminosus’, Appl. Environ. Microbiol., vol. 75, no. 3, pp. 729–734, 2009.

A. Pandey, K. Dhakar, A. Sharma, P. Priti, P. Sati, and B. Kumar, ‘Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95 C) and Ringigad (80 C) hot springs of Uttarakhand, India’, Ann. Microbiol., vol. 65, no. 2, pp. 809–816, 2015.

‘Strickland, J.D.H. and Parsons, T.R. (1972) A Practical Hand Book of Seawater Analysis. Fisheries Research Board of Canada Bulletin 157, 2nd Edition, 310 p. - References - Scientific Research Publishing’. [Online]. Available: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1916578. [Accessed: 23-Jan-2022].

‘American Public Health Association (APHA) (2003) Standard Method for the Examination of Water and Wastewaters. 21st Edition, Washington DC. - References - Scientific Research Publishing’. [Online]. Available: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2015721. [Accessed: 23-Jan-2022].

Downloads

Published

2022-03-07

How to Cite

Nabagye , A. ., & Jane Yatuha(Phd). (2022). Physico-chemical Parameters and Species’ Distribution Patterns of Extremophilic Bacteria in Kitagata and Ihimbo Hot Springs in South Western Uganda. American Scientific Research Journal for Engineering, Technology, and Sciences, 86(1), 157–173. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/7429

Issue

Section

Articles