Response Surface Methodology and Genetic Algorithms Applied to Model and Optimize the Dyeing of Cotton Process with the Reactive Black 5 Dyestuff


  • Jorge Marcos Rosa Instituto SENAI -SP de Tecnologia Têxtil, Moda e Confecção, Brazil
  • André Felipe Henriques Librantz Universidade Nove de Julho, São Paulo, Brazil
  • José Carlos Curvelo Santana Universidade Federal do ABC, São Paulo, Brazil
  • Fábio Cosme Rodrigues dos Santos Sabesp- Companhia de Abastecimento Básico do Estado de São Paul, São Paulo, Brazil
  • Elias Basile Tambourgi Faculdade de Engenharia Química da Universidade Estadual de Campinas, São Paulo, Brazil
  • Ana Maria Frattini Fileti Faculdade de Engenharia Química da Universidade Estadual de Campinas, São Paulo, Brazil


Response surface methodology, Modelling, genetic algorithms, dyeing of cotton, financial impact, environmental impact


This work aimed to combine response surface methodology and genetic algorithms to model and optimize the dyeing process to show the influences of each component in the dyeing of cotton knit to optimize its dyeing conditions. A 26 design of central composite and rotational (DCCR) was used as support to execute seventy-eight dyeings with Reactive Black 5 dyestuff (RB5) on 100% knitted cotton substrate. The impacts of various dyeing process parameters were also investigated. The concentrations of [RB5] (percent), [NaCl] (g/L), [Na2CO3] (g/L), and [NaOH] (mL/L), as well as processing time (min) and temperature (°C), were employed. The K S-1 coefficient and the costs of each experiment were calculated as a result. The objective function was derived from the fitting of the experimental points using the least-squares method and analysis of variance (ANOVA). The findings revealed that both techniques can be efficiently applied to model and optimize the cotton dyeing, with the goal of lowering the cost and environmental impact.


L. Fang, X. Zhang, D. Sun (2013). “Chemical modification of cotton fabrics for improving utilization of reactive dyes”. Carbohydr. Polym. Vol. 9, pp. 363–369, 2013.

M. V. Prado (2013), Sectorial Report of Brazilian Textile Industry. São Paulo, 2019.

M. Gorjanc, M. Šala. “Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes”. Cellulose, vol. 23, pp-2199–2209, 2016

A. Khatri, M.H Peerzada, M. Mohsin, M.White. “A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution”. J. Clean. Prod. Vol. 87, pp-50–57. 2015.

A.Y.L Tang, C.H. Lee, Y.M Wang. C.W Kan. “Dyeing cotton with reactive dyes: a comparison between conventional water-based and solvent-assisted PEG-based reverse micellar dyeing systems". Cellulose, vol. 26, pp.1399–1408, 2019.

M. Punzi, A. Anbalagan, R. Aragão Börner, B.-M Svensson, M Jonstrup, B. Mattiasson.“Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: Evaluation of toxicity and microbial community structure”. Chem. Eng. J. vol. 270, pp-290–299. 2015.

S.Yi. S. Sun. Y. Deng.Y. Ye. X. Jian. “Removal and recovery of CI reactive red 195 from effluent by solvent extraction using reverse micelles”. Text. Res. J. vol. 85, pp-1095–1103. 2014.

Merck,, S. Aldrich, Reactive Black 5. Available at: Accessed March 26, 2019.

J.C.C. Santana, S.A. Araújo, W.A.L Alves, P.A Belan. “Optimization of vacuum cooling treatment of postharvest broccoli using response surface methodology combined with genetic algorithm technique”. Comput. Electron. Agric. Vol. 144, pp-209–215, 2018.

A. F. H. Librantz, N. L. Coppini, E. A. Baptista, S. A. Araújo, A. F. C. Rosa.“Genetic Algorithm Applied to Investigate Cutting Process Parameters Influence on Workpiece Price Formation”. Mater. Manuf. Process, vol. 26, pp- 550–557, 2011.

L. Bao, D.C. Miller. “Tabu search algorithm for chemical process optimization”. Computers & Chemical Engineering, vol 28, pp.2287-2306, 2004.

M.A. C. Benvenga,, A.F. H. Librantz,, J.C. Curvelo Santana,, E.B. Tambourgi. “ Genetic algorithm applied to study of the economic viability of alcohol production from Cassava root from 2002 to 2013”. J. Clean. Prod., vol. 113, pp.483–494, 2016.

S. D. S. Almeida, W. A. L Alves, S. A Araújo, J. C. C Santana,N. Narain, R. R. D. Souza.” Use of simulated annealing in standardization and optimization of the acerola wine production”. Food Science and Technology, vol. 34(2), pp.292-297, 2014.

L.Elliott , D.B. Ingham, A.G. Kyne , N.S. Mera, M Pourkashanian. , C.W Wilson. “Genetic algorithms for optimisation of chemical kinetics reaction mechanisms”. Prog. Energy Combust. Sci., vol.30 , pp. 297-328, 2004.

N. Sikalo,O. Hasemann,C. Schulz, A. Kempf, I. Wlokas. “A genetic algorithm–based method for the optimization of reduced kinetics mechanisms”. Int. J. Chem. Kinet. , vol.47 (11), pp.695– 723, 2015.

A Lapene, G. Debenest, M. Quintard, L. M Castanier, M. G. Gerritsen, A. R. Kovscek. “Kinetics oxidation of heavy oil. 2. Application of genetic algorithm for evaluation of kinetic parameters”. Energy Fuels , vol. 29 (2), pp.1119– 1129, 2015

J.C.C. Santana, S.A. Araújo, A. F .H. Librantz, E. B. Tambourgi. “ Optimization of Corn Malt Drying by Use of a Genetic Algorithm”. Dry. Technol. Vol. 28, pp.1236–1244, 2010.

M. Ghaedi, A.G. Nasab, S. Khodadoust, M. Rajabi, S. Azizian. “Application of activated carbon as adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study”. J. Ind. Eng. Chem. vol. 20, pp.2317–2324, 2014.

A. Picos, J. M. Peralta-Hernández. “Genetic algorithm and artificial neural network model for prediction of discoloration dye from an electro-oxidation process in a press-type reactor”. Water Sci. Technol., vol. 78, pp.925–935, 2018.

M. Taheri, M. R. A. Moghaddam, M. Arami. “Improvement of the Taguchi design optimization using artificial intelligence in three acid azo dyes removal by electrocoagulation”. Environ. Prog. Sustain. Energy, vol. 34, pp.1568–1575, 2015.

A. Mohammadzadeh, M. Ramezani, A. M. Ghaedi. “Synthesis and characterization of Fe2O3–ZnO–ZnFe2O4/carbon nanocomposite and its application to removal of bromophenol blue dye using ultrasonic assisted method: Optimization by response surface methodology and genetic algorithm”. J. Taiwan Inst. Chem. Eng., vol. 59, pp. 275–284, 2016.

C. D. Fernandes,V. R. S. Nascimento, D. B. Meneses, D. S. Vilar, N. H. Torres, M. S. Leite, L. F. R. Ferreira. “Fungal biosynthesis of lignin-modifying enzymes from pulp wash and Luffa cylindrica for azo dye RB5 biodecolorization using modeling by response surface methodology and artificial neural network”. Journal of Hazardous Materials, vol. 399, pp-123094, 2020.

G. Asgari, A. Shabanloo, M. Salari, F. Eslami. “Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network”. Environmental Research, vol. 184, pp-109367, 2020.

K. M Zin, M. I Halmi, E. S. S G. Abd, U. H. Zaidan, A. W Samsuri, M. Y S. Abd. “Microbial Decolorization of Triazo Dye, Direct Blue 71: An Optimization Approach Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN)”. BioMed research international, 2020.

A Mehrizad, P. Gharbani. “Application of central composite design and artificial neural network in modeling of reactive blue 21 dye removal by photo-ozonation process”. Water science and technology, vol. 74(1), pp.184-193, 2016.

N.Vedaraman, K. V. Sandhya, N. R. B. Charukesh, B. Venkatakrishnan, K. Haribabu, M. R. Sridharan, R. J. C. E Nagarajan. “Ultrasonic extraction of natural dye from Rubia cordifolia, optimisation using response surface methodology (RSM) & comparison with artificial neural network (ANN) model and its dyeing properties on different substrates”. Chemical Engineering and Processing: Process Intensification, vol.114, pp.46-54, 2017.

M. Moghaddari, F. Yousefi, M. Ghaedi, K. Dashtian. “A simple approach for the sonochemical loading of Au, Ag and Pd nanoparticle on functionalized MWCNT and subsequent dispersion studies for removal of organic dyes: Artificial neural network and response surface methodology studies”. Ultrasonics sonochemistry, vol. 42, pp.422-433, 2018.

V. Padmanaban, N. Selvaraju, V. Vasudevan, A. Achary. “Radiolytic degradation of reactive textile dyes by ionizing high energy (γ-Co60) radiation: artificial neural network modelling”. Desalination and Water Treatment, vol. 131, pp.343-350, 2018.

G. E. Nascimento,D. C Napoleão, R. M. R. Santana, L. V. C Charamba, J. G. C. Oliveira, M. C. Moura, M. M. M. B. Duarte. “Degradation of textile dyes Remazol Yellow Gold and reactive Turquoise: optimization, toxicity and modeling by artificial neural networks”. Water Science and Technology, vol. 2017(3), pp.812-823. 2018.

N. F. Moraes, R. M Santana, R. K. Gomes, S. G. S. Júnior, A. L. Lucena, L. E Zaidan, D. C Napoleão. “Performance verification of different advanced oxidation processes in the degradation of the dye acid violet 17: reaction kinetics, toxicity and degradation prediction by artificial neural networks”. Chemical Papers, pp.1-14, 2020. (2020).

B. S. Kursun, U. K. Sahin, A. Kiraz. “ Modeling of surface temperature distributions on powered e-textile structures using an artificial neural network”. Textile Research Journal, vol. 89(3), pp. 311-321, 2019.

M Jawahar, C. B K. Narasimhan, M. M. Kondamudi.”Artificial neural networks for colour prediction in leather dyeing on the basis of a tristimulus system”. Coloration Technology, vol. 131(1), pp. 48-57, 2015.

Z. Zhang, F. Sun, Q Li, W. Wang, D. Hu, S. Li. “Establishment of the Predicting Models of the Dyeing Effect in Supercritical Carbon Dioxide Based on the Generalized Regression Neural Network and Back Propagation Neural Network”. Processes, vol. 8(12), pp. 1631, 2020.

A. S. Assémian, K.E. Kouassi, A. E. Zogbé, K. Adouby, P. Drogui. “Removal of methylene blue in aqueous solutions by electrocoagulation process: Adsorption and kinetics studies”. European Journal of Chemistry, vol. 9 (4), pp. 311-316, 2018.

V. Barron, J. Torrent.”Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour”. J. Soil Sci., vol. 37, pp. 499–510, 2018.

J. M. Rosa, A. M. F. Fileti. “Applying of an Artificial Neural Network in Dyeings of Cotton with Reactive Black 5 Dyestuff, in: Fileti, A.M.F., Silva, F.V. (Eds.), Modelling, Simulation and Identification: Intelligent Systems and Control. ACTA Press, Campinas, 2016.

S.C. S. Filho, A.C Miranda, T. A. F. Silva, F. A. Calarge, R. R. Souza, J. C. C. Santana, E. B. Tambourgi. “Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city”. J. Clean. Prod. vol. 183, pp. 1034–1042, 2018.

L.M. Schabbach, D.L. Marinoski,, S. Güths,, A.M. Bernardin,, M.C. Fredel. Pigmented glazed ceramic roof tiles in Brazil: Thermal and optical properties related to solar reflectance index. “Sol. Energy”, vol. 159, pp.113–24, 2018.

L.M. Schabbach,F. Bondioli,, M.C. Fredel, Color prediction with simplified Kubelka–Munk model in glazes containing Fe2O3–ZrSiO4 coral pink pigments .Dye. Pigment, vol. 99(3), pp. 1029–35, 2013.

I. Bunkholt, R. A. Kleiv. “The applicability of the Kubelka–Munk model in GCC brightness prediction”. Miner. Eng. Vol. 56, pp. 129–135., 2014.

W.-H Li, Q.-Y Yue,B.-Y Gao, Z.-H Ma, Y.-J Li, H.-X., Zhao. “Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions”. Chem. Eng. J., vol. 171, pp. 320–327, 2011.

M. Alkan, M.Doğan,Y. Turhan, Ö. Demirbaş, P. Turan. “Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions”. Chem. Eng. J. vol. 139, pp. 213–223, 2008.

G. S. Padilha, J. C. C. Santana , R. M. Alegre, E. B. Tambourgi. Expanded bed adsorption of an alkaline lipase from Pseudomona cepacia. J. Chromatogr. B., vol. 877, pp. 521–526, 2009.

F. Shen, J. Su, X. Zhang, K. Zhang,X. Qi. “ Chitosan-derived carbonaceous material for highly efficient adsorption of chromium (VI) from aqueous solution”. Int. J. Biol. Macromol. Vol. 91, pp.443–449, 2016.

M. C. A. Zurita, J.M Fernández. “A general method for the quantitative assessment of mineral pigments”. Talanta vol. 146, pp. 303–309, 2016.

ABNT. “Textiles - Tests for colour fastness Part E01: Colour fastness to water”, São Paulo. 2013

ABNT. “Textiles — Tests for colour fastness Part E04: Colour fastness to perspiration”. ABNT NBR ISO 105-E04:2014, São Paulo, 2014.

ABNT. “Textiles - Tests for colour fastness Part X 12: Colour fastness to rubbing”, São Paulo, 2007.




How to Cite

Jorge Marcos Rosa, André Felipe Henriques Librantz, José Carlos Curvelo Santana, Fábio Cosme Rodrigues dos Santos, Elias Basile Tambourgi, & Ana Maria Frattini Fileti. (2021). Response Surface Methodology and Genetic Algorithms Applied to Model and Optimize the Dyeing of Cotton Process with the Reactive Black 5 Dyestuff. American Scientific Research Journal for Engineering, Technology, and Sciences, 83(1), 74–95. Retrieved from