Interactions Between Anaerobic Oil Bacteria – Monitoring by Classic and Molecular Microbiology


  • Antonio Carlos Augusto da Costa Universidade do Estado do Rio de Janeiro, Instituto de Química, PPG-EQ, R. S. Francisco Xavier 524, Rio de Janeiro, RJ, Brasil
  • Gustavo Fabbri Montez Universidade do Estado do Rio de Janeiro, Instituto de Química, PPG-EQ, R. S. Francisco Xavier 524, Rio de Janeiro, RJ, Brasil
  • Luiz André Lucas Teixeira Pinto Instituto Nacional de Tecnologia, LABIO, Av. Venezuela 82, Praça Mauá, Rio de Janeiro, RJ, Brasil
  • Márcia Teresa Soares Lutterbach Instituto Nacional de Tecnologia, LABIO, Av. Venezuela 82, Praça Mauá, Rio de Janeiro, RJ, Brasil


Acid producing bacteria, Sulphate reducing bacteria, Sulphide, Metanogenics, Petroleum industry


The biogenic production of sulphide is one of the main problems in oil and gas industry, causing corrosion in storage tanks and pipes. This is possible by the injection of seawater during the secondary oil recovery. In the present work high levels of sulphide and acid producers were detected in water/oil samples from several sites from the petroleum industry. In a further stage, a broader range of microbial cells were detected, and finally, metagenomic analysis confirmed the presence of a diversity of microbes, indicating the complexity of the consortium in the production of sulphide, and based on the activity of acid producing cells and associated species.


. T.L. Skovhus, R.B. Eckert, E. Rodrigues. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry-overview and a North Sea case study. Journal of Biotechnology, vol. 256, pp. 31-45, 2017.

. H. Xu, Y. Wu, X. Xu, M. Gu, D. Jiang, J. Xue. Degradation properties of petroleum degrading bacteria immobilized on modified corn straw in marine environment. Petroleum Science and Technology, vol. 36(23), pp.2043-2048, 2018.

. X. Fu, Q. Zhang, Y. Gao, Y. Wu, X. Xiao, L. Li. Degradation potential of petroleum hydrocarbon-degrading bacteria immobilized on different carriers in marine environment. Petroleum Science and Technology, vol. 37(12), pp. 1417-1424, 2019.

. G.H. Booth. Sulphur bacteria in relation to corrosion. Journal of Applied Microbiology, vol. 27, pp.174–181,1964.

. A. Rajasekar, G.G. Babu, S. Karutha, S. Pandian, S. Maruthamuthu, N. Palaniswamy, A. Rajendran. Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline. Corrosion Science, vol. 49, pp. 2694–2710, 2007.

. B. Zhang, G.H. Huang, B. Chen. Enhanced bioremediation of petroleum contaminated soils through cold-adapted bacteria. Petroleum Science and Technology vol. 26, pp. 955-971, 2008.

. K. Shi, Z. Liu, H. Xu, J. Xue, Y. Liu, Y. Wu. Degradation characteristics and microbial community change of marine petroleum-degrading bacteria in different degradation environments. Petroleum Science and Technology, vol. 36 pp. 1361-1367, 2018.

. Y.J. Chang, C.H. Hung, J.W. Lee, Y.T. Chang, C.J. Chuang. A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials. International Biodeterioration & Biodegradation, vol. 102, pp. 330-338, 2015.

. F.M. Al Abbas, C. Williamson, S.M. Bhola, J.R. Spear, D.L. Olson, B. Mishra, A.E. Kakpovbia. Microbial corrosion in linepipe steel under the influence of a sulphate-reducing consortium isolated from an oil field. Journal of Materials Engineering Performance, vol. 22, pp. 3517–3529, 2013.

. Z. Manafi, M. Hashemi, H. Abdollahi, G.J. Olson. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a mining environment. African Journal of Biotechnology, vol. 12, pp. 6504-6516, 2013.

. M. Magot, B. Ollivier, B. Patel. Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek , vol. 77, pp. 103–116, 2000.

. O. Pornsunthorntawee, P. Wongpanit, S. Chavadej, M. Abe, R. Rujiravanit. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresource Technology, vol. 99, pp. 1589-1595, 2008.

. S. Li, Y. Zhang, J. Liu, M. Yu. Corrosion behavior of steel A3 influenced by Thiobacillus ferrooxidans. Acta Physicho Chimica, vol. 24, pp. 1553-1557, 2008.

. L. Cheng, T. Qiu, X. Li, W Wang, Y. Deng. Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiology Letters, vol. 285, pp. 65–71, 2008.

. M. Pannekens, L. Kroll, H. Müller, F.T. Mbow, R.U. Meckenstock. Oil reservoirs, an exceptional habitat for microorganisms. New Biotechnology, vol. 49, pp. 1–9, 2019.

. G. Bødtker, K. Lysnes, T. Torsvik, E. Bjrnestad, E. Sunde. Microbial analysis of backflowed injection water from a nitrate-treated North Sea oil reservoir. Journal of Industrial Microbiology and Biotechnology, vol. 36, pp. 439–450, 2009.

. W.J. Xia, Z.B. Luo, H.P. Dong, L. Yu. Studies of biosurfactant for microbial enhanced oil recovery by using bacteria isolated from the formation water of a petroleum reservoir. Petroleum Science and Technology, vol. 31, pp. 2311-2317, 2013.

. A. Daryasafar, M. Jamialahmadi, M.B. Moghaddam, B. Moslemi. Using biosurfactant producing bacteria isolated from an Iranian oil field for application in microbial enhanced oil recovery. Petroleum Science and Technology, vol. 34, pp. 739-746, 2016.

. K.Y.M. Almeida. Efeito de surfactantes na estimativa da densidade bacteriana em amostras de Petróleo. Dissertação (M.Sc. Dissertation, in Portuguese) - Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro. 77 pp., 2007.

. M.H. McCrady. The numerical interpretation of fermentation-tube results. The Journal of Infectious Diseases, vol. 17, pp. 183-212, 1915.

. J.G. Caporaso, C.L. Lauber, W.A. Walters, D. Berg-Lyons, C.A. Lozupone, P.J. Turnbaugh. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences USA, vol. 108, pp. 4516–4522, 2011.

. C. Okoro, O.A. Ekun, M.I. Nwume, J. Lin. Molecular analysis of microbial community structures in Nigerian oil production and processing facilities in order to access souring corrosion and methanogenesis. Corrosion Science, vol. 103, pp. 242–254, 2016.

. Y. Sugai, Y. Owaki, K. Sasaki, F. Kaneko, T. Sakai. Numerical modelling of the growth of sulfate-reducing bacteria indigenous to an oilfield in Japan. Petroleum Science and Technology, vol. 36, pp. 1597-1604, 2018.

. H.Y. Ren, X.J. Zhang, Z.Y. Song, W. Rupert, G.J. Gao. Comparison of microbial community compositions of injection and production well samples in a long-term water-flooded petroleum reservoir. PLoS One, vol. 6, pp. e23258, 2011.

. M. Sharma, D. An, T. Liu, T. Pinnock, F. Cheng, G. Voordouw. Biocide-mediated corrosion of coiled tubing. PLoS One, vol. 12, pp. e0181934, 2017.

. H.S. Kim, K. Wright, J. Piccioni, D.J. Cho, Y.I. Cho. Inactivation of bacteria by the application of spark plasma in produced water. Separation and Purification Technology, vol. 156, pp. 544–552, 2015.

. D.L. Adams. Microbiologically influenced corrosion of electrical-submersible pumping-system components associated with acid-producing bacteria and sulphate-reducing bacteria: Case histories, SPE-136756-MS, In: SPE Latin American and Caribbean Petroleum Engineering Conference, 1-3 December, Lima, Peru, Society of Petroleum Engineers, 2010.

. C.C. Okoro, O.O. Armund. Microbial community structure of a low sulfate oil producing facility indicate dominance of oil degrading/nitrate reducing bacteria and Methanogens. Petroleum Science and Technology, vol. 36, pp. 293-301, 2018.

. G. Jacobs, D. Severin. Analysis of anaerobic microorganisms metabolites. Petroleum Science and Technology, vol. 15, pp. 103-125, 2007.

. K. Godini, M.R. Samarghandi, H. Tahmasebi, O. Zarei, Z. Karimitabar, Z. Yarahmadi. Biochemical and molecular characterization of novel PAH-degrading bacteria isolated from polluted soil and sludge. Petroleum Science and Technology, vol. 37, pp. 1763-1769, 2019.

. B.H. Nurul, M.F. Ibrahim, N. Ramli, S. Abd-Aziz. Production of biosurfactant produced from used cooking oil by Bacillus sp. HIP3 for heavy metals removal. Molecules, vol. 24, pp. 2617, 2019.

. K. Godini, M.R. Samarghandi, D. Zafari, A.R. Rahmani, A, Afkhami, M.R. Arabestani. Isolation and identification of new strains of crude oil degrading bacteria from Kharg Island, Iran. Petroleum Science and Technology, vol. 36, pp. 869-874, 2018.

. I.A. Purwasena, Y. Sugai, K. Sasaki. The utilization of natural reservoir brine in an enrichment culture medium: an alternative approach for isolation of anaerobic bacteria from an oil reservoir. Petroleum Science and Technology, vol. 32, pp. 783-789, 2014.




How to Cite

da Costa, A. C. A. ., Montez, G. F. ., Pinto, L. A. L. T. ., & Lutterbach, M. T. S. . (2020). Interactions Between Anaerobic Oil Bacteria – Monitoring by Classic and Molecular Microbiology. American Scientific Research Journal for Engineering, Technology, and Sciences, 74(2), 166–180. Retrieved from