Theoretical Studies of the Chemical Reactivity of a Series of Coumarin Derivatives by the Density Functional Theory

  • Lamoussa Ouattara Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University NanguiAbrogoua, Abidjan, Côte d'Ivoire
  • Kafoumba BAMBA Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University NanguiAbrogoua, Abidjan, Côte d'Ivoire
  • Mamadou Guy-Richard Kone Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University NanguiAbrogoua, Abidjan, Côte d'Ivoire
  • Jean Stéphane N’dri Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University NanguiAbrogoua, Abidjan, Côte d'Ivoire
  • Affoué Lucie Bede Faculty of Science of Structures of Matter and Technology (UFR SSMT), Laboratoire de Constitution et Réaction de la Matière (LCRM), University Félix Houphouët - Boigny, Abidjan-Cocody, Côte d'Ivoire
  • Kouakou Nobel N’guessan Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University NanguiAbrogoua, Abidjan, Côte d'Ivoire
  • Doh Soro Faculty of Fundamental and Applied Sciences (UFR SFA), Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, University NanguiAbrogoua, Abidjan, Côte d'Ivoire
Keywords: coumarin derivatives, global descriptors, DFT, reactivity

Abstract

The global descriptors of reactivity such as HOMO and LUMO energies, chemical hardness, electrophilicity, softness and dipole moment are theoretically determined for five coumarin derivatives in this paper. The analysis of the determined descriptors allows us to classify the studied molecules according to their reactivities. Thus, compound M3 is qualified to be the most reactive and the least stable with 3.933 eV as its gap energy ΔEgap. It is at the same time the softest, the best electron donor, the most electrophilic and the most polar molecule. The study of thermodynamic parameters shows that all the reactions of formation of studied coumarin derivatives are exothermic and spontaneous with less disorder. Furthermore, Hirschfield population analysis was carried out in order to locate the reactive sites, that are assumed to be the electrophilic and nucleophilic sites of the molecules. It appears that all the reactive sites are located on carbon atoms except those of molecule M3 which are located on oxygen atoms. Compounds M1 and M2 have the same electrophilic site (C15) and the same nucleophilic site (C13) thereby showing that the methyl group does not have any influence on the reactive site. The electrophilic site of the molecule M3 is located on both the identical oxygen atoms O33 and O34 while its nucleophilic site is located on the oxygen atoms O12. The electrophilic sites of compound M4 and M5 are the same and it is located on carbon atom(C11) while the nucleophilic site is located on carbon atom C23 for molecule M4. Concerning the nucleophilic sites of molecule M5 it is located on carbon atom C20. The difference nucleophilic reactive site may be due to the conjugation of activity of both fluorine atom and methyl group on the M5.

References

. D. Arora, Pragi; Arora, Varun; Lamba, H. S.; Wadhwa, “Importance of Heterocyclic Chemistry:,” Int. J. Pharm. Sci. Reserach, vol. 3, no. 09, pp. 2947–2954, 2012.

. P. Duquénois, “Coumarines et dérivés: Réparation dans le règne végétal et biosynthèse,” Pharm. Biol., vol. 7, no. 4, pp. 1107–1120, 1967.

. H. Mossaraf and A. K. Nanda, “A Review on Heterocyclic: Synthesis and Their Application in Medicinal Chemistry of Imidazole Moiety,” Sci. J. Chem., vol. 6, no. 5, pp. 83–94, 2018.

. M. Asif, “Overview of Diverse Pharmacological Activities of Substituted Coumarins : Compounds with Therapeutic Potentials,” vol. 1, no. 1, pp. 1–16, 2014.

. N. B. Patel, “New 4-Thiazolidinones of Nicotinic Acid with 2-Amino-6-methylbenzothiazole and their Biological Activity,” Sci. Pharm., vol. 78, no. 4, pp. 753–765, 2010, [Online]. Available: h.

. L. Ouattara, K. Bamba, M. G.-R. Koné, J. S. N’dri, and K. N. N’Guessan, “Predictive Modeling of Breast Anticancer Activity of a Series of Coumarin Derivatives using Quantum Descriptors,” Chem. Sci. Int. J., vol. 26, no. 4, pp. 1–10, 2019.

. J. B. Foresman and Æ. Frisch, Exploring Chemistry With Electronic Structure Methods Second Edition Gaussian, Inc. Wallingford, CT USA. 1996.pp 3

. M. Kurt, T. R. Sertbakan, and M. Özduran, “An experimental and theoretical study of molecular structure and vibrational spectra of 3- and 4-pyridineboronic acid molecules by density functional theory calculations,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 70, no. 3, pp. 664–673, 2008.

. N. Z. J. S. N’dri, M. G-R. Koné, C.G.Kodjo, A. L. C. Kablan, L. Ouattara, O. Ouattara, “Combining of DFT and QSAR Results to Predict the Antibacterial Activity of a Series of Azetidinones derived from Dapsone as Inhibitors of Bacillus Subtilis and Pseudomonas Aeruginosa,” SDRP J. Comput. Chem. Mol. Model., vol. 2, no. 2, pp. 1–9, 2018.

. C. Ravikumar, I. H. Joe, and V. S. Jayakumar, “Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: A vibrational approach,” Chem. Phys. Lett., vol. 460, no. 4–6, pp. 552–558, 2008.

. M. J. Frisch et al., “Gaussian 09, revision A. 02,” Gaussian, Inc., Wallingford, CT, 2009. 1988.

. H. B. Schlegel, “Optimization of equilibrium geometries and transition structures,” J. Comput. Chem., vol. 3, no. 2, pp. 214–218, 1982.

. R. Ditchfield, W. J. Hehre, and J. A. Pople, “Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules,” J. Chem. Phys., vol. 54, no. 2, pp. 724–728, 1971.

. R. Dennington, T. Keith, and J. Millam, “GaussView, Version 5.,” Semichem Inc. , Shawnee Mission, KS. 2016.

. J. W. Ochterski, “Thermochemistry in Gaussian.” pp. 1–19, 2000.

. M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A McDonald and A.N. Syverud "JANAF Thermochemical Tables", 3rd ed. J. Phys. Ref. Data 14 Suppl. No. 1; 1985.

. H. Fujimoto and K. Fukui, “Molecular Orbital Theory of Chemical Reactions,” Adv. Quantum Chem., vol. 6, pp. 177–201, 1972.

. M. Belletête, J. F. Morin, M. Leclerc, and G. Durocher, “A theoretical, spectroscopic, and photophysical study of 2,7-carbazolenevinylene-based conjugated derivatives,” J. Phys. Chem. A, vol. 109, no. 31, pp. 6953–6959, 2005.

. J. I. Aihara, “Reduced HOMO-LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons,” J. Phys. Chem. A, vol. 103, no. 37, pp. 7487–7495, 1999.

. C. Morell, A. Grand, and A. Toro-Labbé, “New dual descriptor for chemical reactivity,” J. Phys. Chem. A, vol. 109, no. 1, pp. 205–212, 2005.

. P. Bultinck, D. Clarisse, P. W. Ayers, and R. Carbo-Dorca, “The Fukui matrix: A simple approach to the analysis of the Fukui function and its positive character,” Phys. Chem. Chem. Phys., vol. 13, no. 13, pp. 6110–6115, 2011.

. J. Melin, P. W. Ayers, and J. V. Ortiz, “Removing electrons can increase the electron density: A computational study of negative fukui functions,” J. Phys. Chem. A, vol. 111, no. 40, pp. 10017–10019, 2007.

. P. Geerlings, F. De Proft, and W. Langenaeker, “Conceptual density functional theory,” Chem. Rev., vol. 103, no. 5, pp. 1793–1874, 2003.

. W. Yang and R. G. Parr, “Hardness, softness, and the fukui function in the electronic theory of metals and catalysis.,” Proc. Natl. Acad. Sci. U. S. A., vol. 82, no. 20, pp. 6723–6726, 1985.

. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, “Electronegativity: The density functional viewpoint,” J. Chem. Phys., vol. 68, no. 8, pp. 3801–3807, 1978.

. R. S. Mulliken, “A new electroaffinity scale; Together with data on valence states and on valence ionization potentials and electron affinities,” J. Chem. Phys., vol. 2, no. 11, pp. 782–793, 1934.

. R. G. Pearson, “Recent advances in the concept of hard and soft acids and bases,” J. Chem. Educ., vol. 64, no. 7, p. 561, 1987.

. T. Koopmans, “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms,” Physica, vol. 1, no. 1–6, pp. 104–113, 1934.

Published
2021-01-02
Section
Articles