Soil-Cement Bricks as an Alternative for Glass Waste Disposal

  • André Luiz Machado Universidade Federal de Mato Grosso – Câmpus Sinop, Av. Alexandre Ferronato, 1200, Distrito Industrial, Sinop, 78576-267 - Brasil
  • Roselene Maria Schneider Universidade Federal de Mato Grosso – Câmpus Sinop, Av. Alexandre Ferronato, 1200, Distrito Industrial, Sinop, 78576-267 - Brasil
  • Adriana Garcia do Amaral Universidade Federal de Mato Grosso – Câmpus Sinop, Av. Alexandre Ferronato, 1200, Distrito Industrial, Sinop, 78576-267 - Brasil
  • Rafael Soares Arruda Universidade Federal de Mato Grosso – Câmpus Sinop, Av. Alexandre Ferronato, 1200, Distrito Industrial, Sinop, 78576-267 - Brasil
  • Flávio Alessandro Crispim Universidade do Estado de Mato Grosso – Unidade Sinop – Avenida dos Ingás, 3001, Jardim Imperial, CEP 78555-000 - Brasil
  • Karinna Pinheiro de Oliveira Universidade Federal de Mato Grosso – Câmpus Sinop, Av. Alexandre Ferronato, 1200, Distrito Industrial, Sinop, 78576-267 - Brasil
  • Jennifer de Souza Onetta Universidade Federal de Mato Grosso – Câmpus Sinop, Av. Alexandre Ferronato, 1200, Distrito Industrial, Sinop, 78576-267 - Brasil
  • Letícia Tamara Hoffmann Universidade Federal de Mato Grosso – Câmpus Sinop, Av. Alexandre Ferronato, 1200, Distrito Industrial, Sinop, 78576-267 - Brasil
Keywords: Waste incorporation, Reuse, Ecological Brick

Abstract

Glass can be recycled an infinite number of times. However, the reverse logistics of bottles, flasks, packaging and others is not always economically feasible, and landfill disposal is widespread in Brazil. The reuse of glass waste is an alternative to recycling, hence the objective of this study was to evaluate the production conditions of soil-cement-glass bricks. The use of glass waste occurred in two ways, one with a cement substitute (glass powder) and another with a soil substitute (crushed glass), in the manufacturing of soil-cement bricks. The results indicated that the glass powder was ineffective in replacing cement. On the other hand, the incorporation of crushed glass significantly improved the mechanical resistance in the specimens. The soil-cement-glass bricks (mass composed of 45% soil, 45% ground glass and 10% cement) molded in conventional and alternative forms showed resistance to the compression established by standards at 14 and 7 days, respectively. This study demonstrated that bricks produced with crushed glass have advantages from the environmental and technical points of view, contributing to the sustainability of the industrial and civil construction sectors.

References

. A. Minelgaitė, G. Liobikienė. “Waste problem in European Union and its influence on waste management behaviours”. Science of the Total Environment, vol. 667, pp. 86–93, 2019.

. M. L. P. Antunes, A. Botignon de Sá, P. S. Oliveira, E. C. Rangel. “Utilization of gypsum from construction and demolition waste in Portland cement mortar”. Cerâmica, vol. 65(Suppl 1), pp. 1-6, 2019.

. A. L. Luza, J. Acordi, D. C. N. Fabris, F. Raupp-Pereira, M. D. M. Innocentini et al. “Obtainment of chemically bonded ceramics from industrial waste”. Cerâmica, vol. 64, pp. 498-506, 2018.

. S. Angelone, M. Cauhapé Casaux, M. Borghi, F. O. Martinez. “Green pavements: reuse of plastic waste in asphalt mixtures”. Material and Structures, vol. 49, pp. 1655, 2016.

. J. G. Uliana, J. L. Calmon, G. L. Vieira, J. E. S. L. Teixeira, E. Nunes. “Heat treatment of processing sludge of ornamental rocks: application as pozzolan in cement matrices”. Ibracon Structures and Materials Journal, vol. 8(2), pp. 100-123, 2015.

. R. Oliveira, J. Brito, R. Veiga. “Incorporation of fine glass aggregates in renderings”. Teoria e Prática na Engenharia Civil, vol. 21, pp.25-39, 2013.

. M. M. Disfani, A. Arulrajaha, H. Haghighi, A. Mohammadinia, S. Horpibulsuk S. “Flexural beam fatigue strength evaluation of crushed brick as a supplementary material in cement stabilized recycled concrete aggregates”. Construction and Building Materials, vol. 68, pp. 667–676, 2014.

. Brazilian Association of Public Cleaning and Special Waste Companies - ABRELPE (Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais). 2008. Panorama of solid waste in Brazil (Panorama dos resíduos sólidos no Brasil). São Paulo: ABRELPE. p. 196. Available: https://abrelpe.org.br/panorama/ [Mar 10, 2020].

. A. M. Rashad. “Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement”. Construction and Building Materials, vol. 72, pp. 340–357, 2014.

. Z. Yao, T. C. Ling, P. K. Sarker, W. Su, J. Liu, W. Wu, J. Tang. “Recycling difficult-to-treat e-waste cathode-ray-tube glass as construction and building materials: A critical review’. Renewable and Sustainable Energy Reviews, vol. 81, pp. 595–604, 2018.

. L. A. Pereira-De-Oliveira, J. P. Castro-Gomes, P. M. S. Santos. “The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components’. Construction and Building Materials, vol. 31, pp. 197-203, 2012.

. J. Wartman, D. G. Grubb, A. S. M. Nasim. “Select engineering characteristics of crushed glass”. Journal of Materials in Civil Engineering, vol. 16(6), pp. 26–39, 2004.

. L. M. Schabbach, F. Andreola, I. Lancellotti, L. Barbieri. “Minimization of Pb content in a ceramic glaze by reformulation the composition with secondary raw materials”. Ceramics International, vol. 37(4), pp. 1367–1375, 2011.

. M. I. B. Souza, A. A. S. Segantini, J. A. Pereira. “Soil-cement pressed bricks made with concrete wastes”. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 12, pp. 205-212, 2008.

. M. L. Pinheiro, R. A. S. S. A. Alvarenga, B. C. Ribeiro, P. R. Silva Júnior, M. S. Sarmet et al. “Experimental evaluation of pressed blocks of soil-cement with grits addition”. Ambiente Construído, vol. 13(2), pp. 29-46, 2013.

. R. C. Ferreira, J. C. C. Gobo, A. H. N. Cunha. “Incorporation of rice and brachiaria husk and their effects on physical and mechanical properties of soil-cement bricks”. Engenharia Agrícola, vol. 28(1), pp. 1-11, 2008.

. P. L. Rodrigues, F. N. J. Holanda. Recycling of water treatment plant waste for production of soil-cement bricks. Procedias Material Science, vol. 8, pp. 194-202, 2013.

. R. F. Leonel, M. V. Folgueras, L. V. O. Dalla Valentina, S. R. Prim, G. A. Prates et al. “Characterization of soil-cement bricks with incorporation of used foundry sand”. Cerâmica, vol. 63, pp. 329-335, 2017.

. R. C. Ferreira, W. J. Freire. “Physical and mechanical behavior of soil mini panels treated with chemical additives”. Engenharia Agrícola, vol. 25(3), pp. 585-597, 2005.

. T. V. Lima, J. Alexandre, M. G. Alves. “Estabilização de Solos argilosos para a produção de blocos ecológicos”. Revista Engenharia Civil, vol. 34, pp. 15-26. 2009.

. National Department of Transport Infrastructure - DNIT (Departamento Nacional de Infraestrutura de Transportes). 2006. Paving Manual (Manual de pavimentação). 3rd edition. Rio de Janeiro: IPR. Available: http://www1.dnit.gov.br/arquivos_internet/ipr/ipr_new/manuais/Manual%20de%20Pavimenta%E7%E3o_05.12.06.pdf [Jul 15, 2019].

. Brazilian Portland Cement Association – ABCP- (Associação Brasileira de Cimento Portland). 2004. Dosages of soil-cement mixtures: dosing standards and test methods (Dosagens das misturas de solo-cimento: normas de dosagem e métodos de ensaio) (ET-35). 3rd atual. rev. São Paulo: ABCP. Available: https://abcp.org.br/wp-content/uploads/2016/01/ET-35_Solo_cimento_Normas_dosagem_metodos_ensaios.pdf [May 5, 2019].

. Brazilian Association of Technical Standards - ABNT (Associação Brasileira de Normas Técnicas). 2016a. NBR 7181: Solo - Análise granulométrica. Rio de Janeiro: ABNT.

. Brazilian Association of Technical Standards - ABNT (Associação Brasileira de Normas Técnicas). 2012a. NBR 12023 - Soil-cement - Compaction test method. Rio de Janeiro: ABNT.

. Brazilian Association of Technical Standards - ABNT (Associação Brasileira de Normas Técnicas). 2016b. NBR 6459: Determinação do limite de liquidez. Rio de Janeiro: ABNT.

. Brazilian Association of Technical Standards - ABNT (Associação Brasileira de Normas Técnicas). 2016c. NBR 7180: Solo - Determinação do limite de plasticidade. Rio de Janeiro: ABNT.

. Brazilian Association of Technical Standards - ABNT (Associação Brasileira de Normas Técnicas). 2012b. NBR 12024: Solo-cimento – Moldagem e cura de corpos de prova cilíndricos - Procedimento. Rio de Janeiro: ABNT.

. Brazilian Association of Technical Standards - ABNT (Associação Brasileira de Normas Técnicas). 2012c. NBR 12025: Solo-cimento – Ensaio de compressão simples de corpos de prova cilíndricos- Método de ensaio. Rio de Janeiro: ABNT.

. Brazilian Association of Technical Standards - ABNT (Associação Brasileira de Normas Técnicas). 2012d. NBR 8491: Tijolo de solo-cimento - Requisitos. Rio de Janeiro: ABNT.

. Brazilian Association of Technical Standards - ABNT (Associação Brasileira de Normas Técnicas). 2012e. NBR 10833: Fabricação de tijolo e bloco de solo-cimento com utilização de prensa manual ou hidráulica – Procedimento. Rio de Janeiro: ABNT.

. Brazilian Association of Technical Standards - ABNT (Associação Brasileira de Normas Técnicas). 2012f. NBR 8492: Tijolo de solo-cimento – Análise de dimensional, determinação da resistência a compressão e da absorção de água – Método de Ensaio. Rio de Janeiro: ABNT.

. D. Romero, J. James, R. Mora, C. D. Hays. “Study on the mechanical and environmental properties of concrete containing cathode ray tube glass aggregate”. Waste Management, vol. 33, pp. 1659–1666, 2013.

. A. Mehtaa, D. K. Ashish. “Silica fume and waste glass in cement concrete production: A review”. Journal of Building Engineering, vol. 29, pp. 100888, 2020.

. B. Li, T. C. Ling, J. G. Yu, J. Wu, W. Chen. “Cement pastes modified with recycled glass and supplementary cementitious material”. Journal of Cleaner Production, vol. 241, pp. 1-8, 2019.

. A. L. Murmu, A. Patel. “Towards sustainable bricks production: An overview”. Construction and Building Materials, vol. 165, pp. 112–125, 2018.

. P. Zak, T. Ashour, A. Korjenic, S. Korjenic, W. Wu. “The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials”. Construction and Building Materials, vol. 106, pp.179–188, 2016.

. E. B. Moreira, J. A. Baldovino, J. L. Rose, L. R. S. Izzo. “Effects of porosity, dry unit weight, cement content and void/cement ratio on unconfined compressive strength of roof tile waste-silty soil mixtures”. Journal of Rock Mechanics and Geotechnical Engineering, vol. 11, pp. 369-378, 2019.

. D. M. Sadek. “Physico-mechanical properties of solid cement bricks containing recycled aggregates”. Journal of Advanced Research, vol. 3, pp. 253-260. 2012.

. M. I. B. Souza, A. A. S. Segantini, J. A. Pereira. “Tijolos prensados de solo-cimento confeccionados com resíduos de concreto”. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 12, pp. 205-212, 2008.

. A. A. S. Segantini, P. Wada. “Estudo de dosagem de tijolos de solo-cimento com adição de resíduos de construção e demolição”. Acta Scientiarum, vol. 33(2), pp. 179-183, 2001.

. J. K. Mitchell. “Soil improvement - state of the art” in Selected Geotechnical Papers of James K. Mitchell: Civil Engineering Classics. I. M. Idriss, Ed. Virginia: American Society of Civil Engineer, 2001, pp. 474-524

. B. R. França, A. R. G. Azevedo, S. N. Monteiro, F. C. Garcia Filho, M. T. Marvila et al. “Durability of Soil-Cement Blocks with the Incorporation of Limestone Residues from the Processing of Marble”. Materials Research, vol. 21(Suppl.1), pp. 11-18, 2018.

Published
2020-08-05
Section
Articles