Structural, Electronic and Optical Properties of CsMI3(M=Ge,Sn,Pb) Perovskite from First Principles

  • Haoxuan Liu Tiangong University School of Physical Science and Technology ,No.399 Binshui West Road Xiqing District, Tianjin300387,China.
  • Haiming Zhang Tiangong University School of Physical Science and Technology ,No.399 Binshui West Road Xiqing District, Tianjin300387,China.
Keywords: All inorganic perovskite, first principles, electronic structure, optical properties


The all-inorganic lead halide perovskites has received wide attention in optoelectronic applications such as solar cells and light-emitting diodes due to its high photoabsorption, suitable bandgap and good stability. Based on the first principles, the electronic structure and optical properties of the structure are studied by substituting all the lead elements in CsPbI3 with Ge and Sn.We found that the structural stability of all the substituted materials was enhanced. The tolerance factors of CsGeI3 and CsSnI3 were 0.934 and 0.874, respectively. The most important point is to replace the toxic Pb element, which not only reduces environmental pollution but also can be more suitable for commercial production. By analyzing the imaginary part of the dielectric function and absorption coefficient, it is found that the blue shift occurs in all the materials which replace Pb element, and the absorption ability of sun light is stronger in the visible light range, which proves the foundation for lead free perovskite solar cells.


. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. 2009, 131, 6050‒6051.

. Ning, Z. et al. Quantum-dot-in-perovskite solids, Nature. 2015, 523, 324‒328.

. Zhang, J.; Hodes, G.; Jin, Z.; Liu, S. All-Inorganic CsPbX3 Perovksite Solar Cells: Progress and Prospects. Angewandte Chemie International Edition. 2019, 58, 15596‒15618.

. Afsari, M.; Boochani, A.; Hantezadeh, M. Electronic, optical and elastic properties of cubic perovskite CsPbI3: Using first principles study. Optik. 2016, 127, 11433‒11443.

. Dong, Q.; Xia, X.; Zhang, B.; Wu, Y.; Dai, S. DFT modeling of ABX3 type perovskite doping structures. Acta Energiae Solaris Sinica. 2016, 37, 3086‒3090.

. Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Soyalp, F. DFT-based ab initio study of the electronic and optical properties of cesium based fluoro-perovskite CsMF3 (M=Ca and Sr). International Journal of Modern Physics B. 2012, 26, 1250199‒1250211.

. Padmavathy, R.; Amudhavalli, A.; Manikandan, M.; Rajeswarapalanichamy, R.; Iyakutti, K. Electronic and Optical Properties of CsSnI3−yCly (y = 0, 1, 2, 3) Perovskites: a DFT Study. Journal of Electronic Materials. 2019, 48, 1243‒1251.

. Jbara, A. S.; Munir, J.; Ul Haq, B.; Saeed, M. A. Density functional theory study of mixed halide influence on structures and optoelectronic attributes of CsPb(I/Br)(3). Applied Optics. 2020, 59, 3751‒3759.

. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990, 41, 7892‒7895.

. Evarestov, R. A.; Kotomin, E. A.; Senocrate, A.; Kremer, R. K.; Maier, J. First-principles comparative study of perfect and defective CsPbX3 (X = Br, I) crystals. Physical Chemistry Chemical Physics. 2020, 22, 3914‒3920 .

. Even, J.; Pedesseau, L.; Jancu, J. M.; Katan, C. DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Physica Status Solidi Rapid Research Letters. 2014, 8, 31‒35.

. Park, H. et al. Exploring new approaches towards the formability of mixed-ion perovskites by DFT and machine learning. Physical Chemistry Chemical Physics. 2019, 21, 1078‒1088.

. Lee, J. H.; Deng, Z.; Bristowe, N. C.; Bristowe, P. D.; Cheetham, A. K. The competition between mechanical stability and charge carrier mobility in MA-based hybrid perovskites: insight from DFT. Journal of Materials Chemistry C. 2018, 6, 12252‒12259.

. Marronnier, A. et al. Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide used for Stable Inorganic Perovskite Solar Cells. Acs Nano, p. acsnano. 8b00267. 2018, 12, 3477‒3486.

. Grote, C.; Berger, R. F. Strain Tuning of Tin-Halide and Lead-Halide Perovskites: A First-Principles Atomic and Electronic Structure Study. Journal of Physical Chemistry C. 2015, 119, 22832‒22837.

. Fang, Z. et al. Bandgap alignment of α-CsPbI3 perovskites with synergistically enhanced stability and optical performance via B-site minor doping. Nano Energy. 2019, 61, 389‒396.

. Jono, R.; Segawa, H. Theoretical Study of the Band-gap Differences among Lead Triiodide Perovskite Materials: CsPbI3, MAPbI3, and FAPbI3. Chemistry Letters. 2019, 48, 877‒880.

. Liu, D.; Li, S.; Fang, B.; Meng, X. First-Principles Investigation on the Electronic and Mechanical Properties of Cs-Doped CH3NH3PbI3. Materials. 2018, 11, 1141‒1151.

. Paduani, C.; Rappe, A. M. Tuning the gap of lead-based halide perovskites by introducing superalkali species at the cationic sites of ABX3-type structure. Physical Chemistry Chemical Physics Pccp. 2017, 19, 20619‒20626.

. Song, G.; Gao, B.; Li, G.; Zhang, J. First-principles study on the electric structure and ferroelectricity in epitaxial CsSnI3 films. Science. 2017, 7, 41077‒41083.

. Wan, J. et al. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials. 2014, 26, 4653‒4660.

. Rahman, N. M.; Adnaan, M.; Adhikary, D.; Islam, M.; Alam, M. K. First-principles calculation of the optoelectronic properties of doped methylammonium lead halide perovskites: A DFT-based study. Computational Materials Science. 2018, 150, 439‒447.

. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry. 2013, 52, 9019‒9038.

. Yang, Y.-Y.; Wang, L. S.; Xu, W. K.; Zhang, Y.; Chen, F. X. Simulation Optimizing Planar Heterojunction Perovskite Solar Cells with CsGeI3 as Hole Transport Materials. Journal of Synthetic Crystals. 2017, 46, 814‒819.

. Giorgi, G.; Fujisawa, J. I.; Segawa, H.; Yamashita, K. Cation Role in Structural and Electronic Properties of 3D Organic–Inorganic Halide Perovskites: A DFT Analysis. Journal of Physical Chemistry C. 2014, 118, 12176‒12183.

. Hong, J.; Stroppa, A.; Iniguez, J.; Picozzi, S.; Vanderbilt, D. Spin-phonon coupling effects in transition-metal perovskites: A DFT + U and hybrid-functional study. Physical Review B Condensed Matter. 2011, 85, 054417‒054428.

. Zhou, J.; Fan, W.; Zhou, Q.; Wu, K.; Cheng, Y. DFT studies of electronic structure and dielectric properties in layered perovskite. Journal of Computational Electronics. 2016, 15, 466‒472.

. Leupold N.; Scho¨tz K.; Cacovich, S. et al. High versatility and stability of mechanochemically synthesized halide perovskite powders for optoelectronic devices. ACS Appl Mater Interfaces. 2019, 11, 30259‒30268.

. Ghebouli, M. A.; Ghebouli, B.; Fatmi, M.; Bouhemadou, A. Calculation of physical properties of the cubic perovskite-type oxide using the PP-PW method based on the DFT theory. Solid State Communications. 2011, 151, 908‒915.

. Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science. 2016, 352, 4424‒4434.