Thermo, Electrical and Structural Properties of Solid Electroyte Doped Bi2O3 Binary and Ternary Systems

  • Erkan Erden Institute of Science, Kütahya Dumlupınar University, 43000 Kütahya, Turkey
  • Semra Durmuş Acer Department of Energy Systems Engineering, Faculty of Technology, Kütahya Dumlupınar University, 43500 Kütahya, Turkey
Keywords: Bismuth trioxide (Bi2O3), Solid oxide electrolyte, Dysprosium trioxide (Dy2O3), Europium trioxide (Eu2O3), Oxygen ionic conduction

Abstract

In this study; production and characterization of Bi2O3 based solid electrolytes used in medium-temperature solid oxide fuel cells (IT-SOFC) were performed. Solid electrolyte samples were obtained using compounds Eu2O3, Dy2O3 and Bi2O3. Stable phase which can create the highest power density δ-Bi2O3 (cubic-fcc) was tried to be reached for IT-SOFC. X-ray diffractometry (XRD) and differential thermal analysis and thermal gravimeter (TG/DTA) with binary (Eu2O3-Bi2O3) and ternary (Eu2O3-Dy2O3-Bi2O3) powder materials were analyzed for crystal structure identification. Bi2O3-based compounds with the cubic structure have been identified in those composition regions ((Bi2O3)0,6(Eu2O3)0,3) and ((Bi2O3)1-x-y(Dy2O3)x(Eu2O3)y, 0.25 ≤ x ≤ 0.35, y=0,05). Four point measurement techniques were used for electrical characterization. The conductivity of the ternary system is higher than the conductivity of the binary system. The highest conductive sample is (Bi2O3)0,7(Dy2O3)0,25(Eu2O3)0,05 0.3 S/cm at 800 oC.

References

. A. Boudghene Stambouli and E. Traversa, ‘‘Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy,’’ Renew. Sust. Energy Rev., vol.6 p.433, 2002.

. E.J. Naimaster, A.K.Sleiti, ‘‘Potential of SOFC CHP systems for energy-efficient commercial buildings,’’ Energy and Buildings, vol.61, p.153–160, 2013.

. A. Choudhury, H. Chandra and Arora A, ‘‘Application of solid oxide fuel cell technology for power generation—A review,’’ Renew. Sust. Energy Rev., vol.20, p.430-442, 2013.

. N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldingera, ‘‘Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity.’’ J. Eur. Ceram. Soc.,vol.19, p.1801-1826, 1999.

. N.Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Upadhyay, O. Parkash, ‘‘A brief review on ceria based solid electrolytes for solid oxide fuel cells,’’ J. Alloys Compd.,vol.781, p. 984-1005, 2019.

. E.P. Kharitonova, E.I. Orlova, N.V. Gorshkov, V.G. Goffman, S.A. Chernyak, V.I. Voronkova, ‘‘Polymorphism and conductivity of Bi2O3-based fluorite-like compounds in Bi2O3-Nd2O3-MoO3 system,’’ J. Alloys Compd., vol.787, p. 452-462, 2019.

. A.Watanabe, M.Sekita, ‘‘Stabilized y-Bi2O3 phase in the system Bi2O3–Er2O3–WO3 and its oxide-ion conduction ,’’ Solid State Ion.,, Vol. 176, p. 2429 – 2433, 2005.

. H. Sun, X. Guo, F. Yu, Z. Yang, G. Li, J. Li, H. Ding, F. Meng, Z. Fan, P. Wang, W. Yan, Z. Hu, ‘‘Enhanced sinterability and electrical performance of Sm2O3 doped CeO2/BaCeO3 electrolytes for intermediate-temperature solid oxide fuel cells through Bi2O3 co-doping,’’ Ceram. Int., vol.45, p. 7667, 2019.

. İ.

. Ermiş, S.P.S. Shaikh, ‘‘Study of crystallographic, thermal and electrical properties of (Bi2O3)1-x-y(Tb4O7)x(Gd2O3)y electrolyte for SOFC application,’’ Ceram. Int.,vol.44, p.18776, 2018.

. N. Jiang, E. D. Wachsman, S.H. Jung, ‘‘A higher conductivity Bi2O3-based electrolyte,’’ Solid State Ion., vol.150, p.347, 2002.

. M. Arı, M. Balcı, Y. Polat, ‘‘Synthesis and characterization of (Bi2O3)1−x−y−z(Gd2O3)x (Sm2O3)y(Eu2O3)z quaternary solid solutions for solid oxide fuel cell,’’ Chınese J. Phys. , Vol.56, p. 2958-2966, 2018.

. İ. Ermiş, M. Arı, S.Durmuş Acer, Y. Dağdemir, ‘‘Phase stability and electric conductivity of Eu2O3–Tb4O7 co-doped Bi2O3 electrolyte,’’ Int. J. Hydrogen Energ., Vol.40, p.9485-9490, 2015.

. G. Malmros, ‘‘The Crystal Structure of alpha-Bi2O3,’’ Acta Chem. Scand., vol.24, p.384, 1970.

. C.M.B. Hincapié, M.J.P. Cardenas, J.E.A. Orjuela, E.R. Parra and J.J.O. Florez, ‘‘Physical-chemical properties of bismuth and bismuth oxides: Synthesis,’’ DYNA, vol.79, p.139, 2012.

. R. Li, Q. Zhen, M. Drache, A. Rubbens, R.N.Vannier, ‘‘Preparation mechanism of (Bi2O3)0.75(Dy2O3)0.25 nano-crystalline solid electrolyte,’’ J. Alloys Compd., p. 446-450, 2010.

. E.P. Kharitonova, V.I. Voronkova, D.A. Belov, and E.I. Orlova, ‘‘Fluorite-like compounds with high anionic conductivity in Nd2MoO6 e Bi2O3 system,’’ Int. J. Hydrogen Energy, vol.41, p.10053, 2016.

. S. Obbade, M. Huve, E. Suard , M. Drache and P. Conflan, ‘‘Powder Neutron Diffraction and TEM Investigations of Bi0.775Ln0.225O1.5 Oxide Conductors (Ln=La, Pr, Nd, Sm, Tb, Dy) with Rhombohedral Bi–Sr–O type: Structural Relationships with Monoclinic ε-Bi4.86La1.14O9 Form,’’ J. Solid State Chem., vol.168,p. 91,2002.

. M. Drache, S.Obbade, J. P.Wignacourt and P. Conflant, ‘‘Structural and Conductivity Properties of Bi0.775Ln0.225O1.5Oxide Conductors (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy) with Rhombohedral Bi–Sr–O Type,’’ J. Solid State Chem., vol.142, p.349, 1999.

. S. F. Wang, Y. F. Hsu, W. C. Tsai and H. C. Lu, ‘‘The phase stability and electrical conductivity of Bi2O3ceramics stabilized by Co-dopants,’’J. Power Sources, vol.218, p.106-112, 2012.

. J. Dempsey, ‘‘Hydrogen Fuel Cell Engines and Related Technologies,’’ Energy Technology Training Center, USA, 2001.

. B. Timurkutluk, Performance Analysis of an Intermediate Temperature Solid Oxide Fuel Cell, Mıddle East Technical University, TURKEY, 2007.

. H. A. Taroco, J. A. F. Santos, R. Z. Domingues and T. Matencio, Advances in Ceramics Synthesis and Characterization, Processing and Specific Applications, CROITA, 2011.

. E. Yiğit, The production and characterization of the solid oxide fuel cell with NiO composite anode, -Bi2O3 solid electrolyte and lnf cathode Thesis, Erciyes University, TURKEY, 2014.

. D. W. Jung, K. L. Duncan and E. D. Wachsman, ‘‘Effect of total dopant concentration and dopant ratio on conductivity of (DyO1. 5) x–(WO3) y–(BiO1. 5) 1− x− y,’’ Acta Mater. vol.58, p.355, 2010.

Published
2020-05-22
Section
Articles