Effect of the Phosphorus-Solubilizing Bacterium Enterobacter Ludwigii on Barley Growth Promotion

  • Claudia Ribaudo Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica
  • Jose Ignacio Zaballa Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica
  • Rodolfo Golluscio Cátedra de Forraje, CONICET. Avenida San Martin 4453, C1417DSE, Ciudad Autónoma de Buenos Aires Argentina
Keywords: Rhizobacteria, Phosphate-solubilizing bacteria, Phosphorous chemical fertilizer, Barley, Yield


Phosphorus (P) is essential for plant growth and development but is often a limiting nutrient in soils. Thus, Pi acquisition from the soil by plant roots is a subject of considerable interest in agriculture. One ecological alternative is the use of P-solubilizing bacteria, which make P available to plants through different mechanisms. Thus, the aim of the present study was to investigate the role of the P-solubilizing bacterium Enterobacter ludwigii in the growth promotion and P content of Hordeum vulgare (barley) under field conditions. Plants were inoculated with E. ludwigii and then its growth promotion effects were compared with those of the reference strain Azospirillum brasilense. The effect of bacterial inoculation showed a beneficial effect on the dry weight, P assimilation and barley yield, especially in E. ludwigii-inoculated plants.  The plant P content at 60 DAS was 38% to 56% higher in E. ludwigii -inoculated plants with respect to non-inoculated plants. The application of bacteria without fertilizer led to the same biological yield (3,795 kg/ha) and increase in one thousand seed weight as the maximum dose of chemical fertilizer applied, while the application of bacteria along with the intermediate fertilizer dose led to a significant increase in grain size (83% of plump grains larger than 2.75 mm wide, whereas 76% of the grains of the control plants reached that size). Endophyte populations of the inoculated bacteria were observed in plants growing under field conditions. The results demonstrated that the inoculation of with E. ludwigii is a promising option to increase P levels in plants and could be a technique for application in agricultural industry.


A. Abril, L. Roca. “Impact of nitrogen fertilization on soil and aquifers in the Humid Pampa, Argentina”. The Open Agriculture Journal, vol. 2, pp 22-27, May. 2008.

D.M. Sylvia, P.G Hartel, J. Furhmann, D. Zuberer. “Principles and applications of soil microbiology”. 2nd Edn., Upper Saddle River, New Jersey, Prentice Hall Inc Jul, 2004, pp 672.

S. Mundra, R. Arora, T. Stobdan. “Solubilization of insoluble inorganic phosphates by a novel temperature, pH, and salt tolerant yeast, Rhodotorula sp. PS4, isolated from seabuckthorn rhizosphere, growing in cold desert of Ladakh, India”. World J. Microbiol. Technol., vol. 27 pp 2387-2396, Oct. 2011.

S. Compant, C. Clément, A. Sessitscha. “Plant growth-promoting bacteria in the rhizo-and endosphere of plants: role, colonization, mechanisms involved and prospects for utilization”. Soil Biol Biochem, vol. 42 pp 669-678, Nov. 2010.

S. Gouda, R.G. Kerry, G. Das, S. Paramithiotis, H.S. Shin, J.K. Patra. “Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture”. Microbiol Res, vol. 206 pp 131-140, Jan. 2018.

G. Santoyo, G. Moreno-Hagelsiebb, M.C. Orozco-Mosqueda, B. Glick. “Plant growth-promoting bacterial endophytes”. Microbiological Research, vol. 183 pp 92–99, Feb. 2016.

M. Bucher. “Functional biology of plant phosphate uptake at root and mycorrhiza interface”. New Phytol., vol. 173 pp 11-26, Feb. 2007.

M. Schoebitz, C. Ceballos, L. Ciampi. “Effect of immobilized phosphate solubilizing bacteria on wheat growth and phosphate uptake”. J. Soil Sci. Plant Nutr., vol. 13 pp 1-10, Mar. 2013.

H.A. Alikhani, N. Saleh-Rastin, H. Antoun. “Phosphate solubilization of rhizobia native to Iranian soils”. P. Soil, vol. 287 pp 35-41, May 2006.

M. Nico, C.M. Ribaudo, J.I. Gori, M.L Cantore, J.A Curá. “Uptake of phosphate and promotion of vegetative growth in glucose-exuding rice plants (Oryza sativa) inoculated with plant growth-promoting bacteria”. Applied soil ecology, vol. 61 pp 190-195, Oct. 2011.

M. Schoebitz, C.M. Ribaudo, M. Pardo, M.L Cantore, L. Ciampi, J. A. Cura. “Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere”. Soil Biol Biochem. vol. 41, pp 1768-1774, Dec. 2007.

Y.E. Morales-García, D.A. Juárez-Hernández C. Aragón-Hernández, M.A. Mascarua-Esparza M.R., Bustillos-Cristales, L.E. Fuentes-Ramírez, R.D. Martínez Contreras, J. Muñoz-Rojas, “Growth Response of Maize Plantlets Inoculated with Enterobacter sp., as a Model for Alternative Agriculture”. Rev Argent Microbiol., vol. 43 pp 287-293, Dec. 2011.

F. Ogbo, J. Okonkwo, “Some Characteristics of a Plant Growth Promoting Enterobacter sp. Isolated from the roots of maize” Adv Microbiol., vol, 2 pp 368-374, Aug. 2012.

Q. Pan, I. Shikano, K. Hoover, T-X Liu, G.W. Felton. “Enterobacter ludwigii, isolated from the gut microbiota of Helicoverpa zea, promotes tomato plant growth and yield without compromising anti-herbivore defenses.” Arthropod-Plant Interactions, vol. 13, pp. 271-278, Apr. 2019.

K.K.I.U. Arunakumara, B.Ch. Walpola, J.-S. Song, M.J. Shin, Ch-J. Lee, M-H. Yoon. “Phytoextraction of Heavy Metals Induced by Bioaugmentation of a Phosphate Solubilizing Bacterium. Korean” J. Environ. Agriculture, vol. 33 pp 220-230, Jun. 2014.

E. Egidi, J.L. Wood, S. Aracic, R. Kannan, L. McDonald, C.A Bell, E.M. Fox, W. Liu, A.E Franks. “Draft Genome Sequence of Enterobacter ludwigii NCR3, a Heavy Metal-Resistant Rhizobacterium”. Genome Announc., vol. 6 pp 4, Oct. 2016.

O. Psakia, S. Mainaa, A. Vlysidisb, S. Papanikolaoua, A. Machado de Castro, D.M.G. Freired, E. Dheskalie, I. Kookose, A. Koutinasa. “Optimisation of 2,3-butanediol production by Enterobacter ludwigii using sugarcane molasses” Biochemical Engineering Journal, vol. 152, Dec. 2019.

J. Döbereiner. “Isolation and identification of aerobic nitrogen fixing bacteria from soil and plants” In Methods in Applied Soil microbiology and Biochemistry. K Alef and P Nannipieri (eds.) Academic Press. Harcourt Brace y Company Publishers. London. pp. 134-141, 1995.

A. Walkley, I.A. Black. “An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method”. Soil Sci, vol. 37, pp 29–38, Jan. 1934.

R.H. Bray, L.T. Kurtz. “Determination of total, organic, and available forms of phosphorus in soils”. Soil Sci., vol.59, pp 39-45, Jan. 1945.

A.J, Pieters, M.J., Paul, D.W. Lawlor. “Low sink demand limits photosynthesis under Pi deficiency”. J Exp Bot, vol. 52, pp 1083-1091, May. 2001.

E. Rodríguez-Cáceres. “Improved medium for isolation of Azospirillum spp”. Appl. Environ. Microbiol., vol.44 pp, 990-991, Oct. 1982.

W. Jarecki, J. Buczek, D. Bobrecka-Jamro. “Response of spring wheat to different soil and foliar fertilization”. Journal of Central European Agriculture, vol. 18, pp. 460-476, Jun. 2017.

G. Kalayu. “Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers” International Journal of Agronomy, vol. 2019, pps 7, May 2019.

A.L. Oliveira, O.J. Santos, P.R. Marcelino, K.M. Milani, M.Y. Zuluaga, C. Zucareli, L.S Gonçalves. “Maize Inoculation with Azospirillum brasilense Ab-V5 cells enriched with exopolysaccharides and polyhydroxybutyrate results in high productivity under low N fertilizer input”. Front Microbiol., vol. 8 pp, 1873, Sept. 2017.

P. Magliano, P. Prystupa, F. Gutiérrez-Boem. “Protein content of grains of different size fractions in malting barley”. J. Inst. Brew. Vol. 120, pp 347-352, Sept. 2014.

M. Zakria, A. Ohsako, Y. Saeki, A. Yamamoto, S. Akao. “Colonization and Growth Promotion Characteristics of Enterobacter sp. and Herbaspirillum sp. on Brassica oleracea”. Soil Sc. Plant Nutr., vol. 54, pp 507-516, Jul. 2008.

G. Li, Z. Hu, P. Zeng, B. Zhu, L.Wu. “Whole genome sequence of Enterobacter ludwigii type strain EN-119T, isolated from clinical specimens”. FEMS Microbiol. Let. vol., 362, pp 1-3, Feb. 2015.

B.C. Walpola, K.K.I.U Arunakumara. “Assement of phosphate solubilization and indole acetic acid production in plant growth promoting bacteria isolated from greenhouse soils of Gonju-Gun, South Korea”. Tropical Agricultural Research and Extension, vol. 18 pp. 31–39, Nov. 2016.

M.M. Collavino, P.A. Sansberro, L.A. Mroginski, O.M. “Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth”. Biol Fertil Soils, vol. 46 pp. 727-738, Jul. 2010.

Y. Bashan, A. Kamnev, L.E Bashan. “Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure”. Biol Fertil Soils, vol. 49, pp. 465-479, Jul. 2013.

C.M. Ribaudo, A.N. Paccusse, J.A. Curá, A.A. Fraschina. “Azospirillum-maize association: effects on yield dry matter content and the nitrate reductase activity”. Agricultura Tropica et Subtropica, vol. 31, pp. 61-70, May 1998.

C.M. Ribaudo, E. M. Krumpholz, F.D. Cassán, R. Bottini, M L. Cantore, JA Curá. “Azospirillum sp. Promotes Root Hair Development in Tomato Plants through a Mechanism that Involves Ethylene”. J Plant Growth Regul., vol. 25, pp. 175–185, Jun. 2006.

B.S. Kundu, A.C Gaur.“Establishment of nitrogen fixing and phosphate dissolving bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop”. Pl. Soil, vol. 57, pp 223–230, Jun. 1980.

R.P. Ryan, K. Germaine, A. Franks, D.J. Ryan, D.N Dowling.“Bacterial endophytes: recent developments and applications”. FEMS Microbiol Lett., vol. 278, pp. 1–9, Jan. 2008.

M.Y. Canbolat, S. Bilen, R, Çakmak, F. Şahin, A. Aydın. “Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora”. Biol Fertil Soils., vol. 42, pp. 350–357, Aug. 2005.

P. K. Chang, K.E. Gerhardt, X.D Huang, X.M Yu, B.R. Glick, P.D, Gerwing, B.M. Greenberg. “Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils”. Int J Phytoremediation, vol. 16, pp. 1133-1147, Feb. 2014.

A.R.S. Santos, R.M. Etto, R.W. Furmam, D.L. Freitas, K.F.D.N. Santos, E.M. Souza, F.O. Pedrosa, R.A. Ayub, M.B.R. Steffens, C.W. Galvão. “Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots”. Plant Physiol Biochem., vol. 118 pp. 422-426, Sept. 2017.

M. Cardinale, S. Ratering, C. Suarez, A.M. Zapata Montoya, R. Geissler-Plaum, S. Schnell. “Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress”. Microbiol Res., vol. 181 pp. 22-32, Dec. 2015.

M.M. Rahman, E. Flory, H.W. Koyro, Z. Abideen, A. Schikora, C. Suarez, S. Schnell, M. Cardinale. “Consistent associations with beneficial bacteria in the seed endosphere of barley (Hordeum vulgare L.)”. Syst Appl Microbiol., vol. 41 pp. 386-398, Jul. 2018.