The Photocatalytic Applications of TiO2-WO3 Heterostructure in Methylene Blue


  • Guangyuan Hai Tiangong University,School of Physical Science and Technology, TianJin,300387,CHN
  • Haiming Zhang Tiangong University,School of Physical Science and Technology, TianJin,300387,CHN


titania dioxide, tungsten trioxide, photocatalytic, methylene blue


In this work, TiO2-WO3 composite materials were forged by sol-gel method and the forged samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and UV-vis diffuse reflectance spectroscopy. The tough interaction in the interface of TiO2-WO3 heterostructures and the solar spectral response of TiO2 and WO3 reduce the electron-hole pair recombination rate and enhance the photoelectrochemical activity. The TiO2-WO3 heterostructures also show good adsorption ability for organic pollutants. This study testified that the fabricated TiO2-WO3 heterostructures are expectation materials for efficient water splitting as well as adsorption and photocatalytic wipe off organic pollutants.


. R.Abazari,A.R.Mahjoub,L.A. Saghatforoush, S. Sanati, Mater.Lett. 133, 208-211 (2014)

. S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Recent overview and trends. Catal. Today 147, 1-59 (2009)

. M.A. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. J. Chem. Eng. 151,10-18 (2009)

. A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J. Mol. Catal. A Chem. 328, 8-26 (2010)

. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut. 215,3-29 (2011)

. L. Gao, W. Gan, Z. Qiu, X. Zhan, T. Qiang, J. Li, Preparation of heterostructured WO3/TiO2 catalysts from wood fibers and its versatile photodegradation abilities,Sci. Rep.7 (2017) 1102.

. D. Spanu, S. Recchia, S. Mohajernia, P. Schmuki, M. Altomare, Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: an electron transfer cascade-based H2 evolution photocatalyst, Appl. Catal. B: Environ. 237 (2018) 198-205.

. ] M.V. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, E. Selli, Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency, Appl. Catal. B: Environ. 186 (2016) 157-165.

. N.A. Ramos-Delgado, L. Hinojosa-Reyes, I.L. Guzman-Mar, M.A. Gracia-Pinilla, A. Hernandez-Ramirez, Synthesis by sol-gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide, Catal. Today 209 (2013) 35-40.

. P. Pandi, C. Gopinathan, Synthesis and characterization of TiO2-NiO and TiO2-WO3 nanocomposites, J. Mater. Sci.: Mater. Electron. 28 (2017) 5222-5234.

. D. Ke, H. Liu, T. Peng, X. Liu, K. Dai, Mater. Lett. 62 (2008) 447-450.

. F. Riboni, L.G. Bettini, D.W. Bahnemann, E. Selli, WO3-TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides, Catal. Today 209 (2013) 28-34. L. Baia, E. Orban, S. Fodor, B. Hampel, E.Z. Ked.

. S. Eibl, B.C. Gates, H. Knozinger, Langmuir 17 (2001) 107-115.




How to Cite

Hai, G. ., & Zhang, H. . (2019). The Photocatalytic Applications of TiO2-WO3 Heterostructure in Methylene Blue. American Scientific Research Journal for Engineering, Technology, and Sciences, 61(1), 135–142. Retrieved from