A Computational Determination of Reactivity Descriptors, Vibrational Analysis and Nuclear Magnetic Resonance of (E)-5-oxo-1-phenyl-4-(2-phenylhydrazono)-4,5-dihydro- 1H-pyrazole-3-carbaldehyde

Authors

  • Nagwa Hamada Department of Physics and Chemistry, Faculty of Education, University of Alexandria, 21526 Alexandria, Egypt
  • Mohamed A. El Sekily Department of Chemistry, Faculty of Science, University of Alexandria, 21321 Alexandria, Egypt.
  • Sohila H. Mancy Department of Physics and Chemistry, Faculty of Education, University of Alexandria, 21526 Alexandria, Egypt

Keywords:

Pyrazole carbaldehyde, DFT, Chemical potential, Hardness, Shielding density

Abstract

The title compound, pyrazole carbaldehyde have been optimized using Gaussian 9 software program, via density functional theory framework (DFT/B3LYP) by 6-311G (d, p) basis set, the output file was visualize using Gaussian view program, geometric properties, thermochemical and reactivity descriptors such as ionization potential (IP), electron affinity (EA), electronegativity (?), chemical potential (?), hardness (?), softness (?), electrophilicity index (?) and nucleophilicity index (N) were calculated.  Mapping of electrostatic surface potential (MESP) allow us to establish trends that enable making predictions about the reactive sites of the studied compound. Besides, the optimized structure is subjected to frequency analysis at the same level of theory to obtain thermodynamic correction values. Vibrational assignments and nuclear magnetic resonance (1H- &13C-NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method using the CPCM model, and mapping of current density shielding of proton and carbon nucleus of the aldehyde group shied light on the molecular properties and reactivity of 5-oxo-1-phenyl-4-(2-phenylhydrazono)-4,5- dihydro-1H-pyrazole-3-carbaldehyde .

References

. W.J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople. Ab Initio Molecular Orbital Theory. New York, NY, USA: John Wiley, 1986. https://doi.org/10.1002/jcc.540070314

. P. Hohenberg, W. Kohn. "In homogeneous electron gas". Phys. Rev., 136, B864–B871,1964 https://doi.org/10.1103/PhysRev

. R. G. Parr, W. Yang. Density Functional Theory of Atoms and Molecules. Oxford, New York. 1989.

. A. Szabo, N.S. Ostlund. Modern Quantum Chemistry. McGraw-Hill, New York. 1989.

. Dreizler R. M., E.K.U.Gross. Density Functional Theory. New York: Springer, 1990 .

. J.B. Foresman, A. Frisch. Exploring Chemistry with Electronic Structure Methods. Gaussian, Pittsburgh, PA. 1996.

. M. Springborg. Density Functional Methods in Chemistry and Materials Science. New York: Wiley, 1997

. I. Fleming. Frontier Orbitals and Organic Chemical Reactions. New York, NY, USA: John Wiley and Sons, 1976.

. P. Geerlings, F. de Proft, W. Langenaeker. "Conceptual density functional theory". Chemical Reviews. vol. 103(5),pp.1793–1873, 2003. https://doi.org/10.1021/cr990029p

. M. Cossi, N. Rega, G. Scalmani, V. Barone. "Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model". Journal of Computational Chemistry, 24(6), 669–681, 2003. https://doi.org/10.1002/jcc.10189

. L.R. Domingo, E. Chamorro, P. Pérez . "Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study". Journal of Organic Chemistry, 73, 4615–4624, 2008. https://doi.org/10.1021/jo800572a

. F. Zielinski, V. Tognetti, L. Joubert. "Condensed descriptors for reactivity: a methodological study". Chemical Physics Letters., 527, 67–72, 2012.

. L.R. Domingo. "A new C–C bond formation model based on the quantum chemical topology of electron density". RSC Advances., 4(61), 32415–32428, 2014.

. L.R. Domingo, M. Ríos-Gutiérrez, P. Pérez. "Applications of the conceptual density functional theory indices to organic chemistry reactivity'. Molecules, 21(6),748-769, 2016.

. L.R. Domingo. "Molecular electron density theory: a modern view of reactivity in organic chemistry". Molecules, 21(10),1319-1333, 2016.

. Thom H. Dunning Jr. "Gaussian Basis Functions for Use in Molecular Calculations. I. Contraction of (9s5p) Atomic Basis Sets for the First‐Row Atoms". J Chem Phys., 53, 2823, 1970. https://doi.org/10.1063/1.1674408

. B. Liu, A.D. Mclean. "Accurate calculation of the attractive interaction of two ground state helium atoms". J Chem Phys., 59, 4557, 1973. https://doi.org/10.1063/1.1680654

. M.A. Thompson. Argus Lab 4.0.1. Planaria Software LLC, Seattle, WA. 2007.

. R. Poirier, R. Kari, I.G. Csizmadia. Handbook of Gaussian Basis Sets. New York: Elsevier, 2007.

. M.A. El Sekily, M.E. Elba, F. S. Foad. "Studies on Dehydro-L-Ascorbic Acid and Dehydro-D-Isoascorbic Acid Hydrazones". Journal of Chemical Research, 4, 296-297, 1999.

. M.A. El Sekily, M.E. Elba, F. S. Foad. "Some Heterocycles from Dehydro-L-Ascorbic Acid and Dehydro-D-Isoascorbic Acid". Journal of the Indian Chemical Society, 77, 168-171, 2000.

. M.A. El Sekily, S.H. Mancy, N.M.M. Hamada. "Synthesis, Characterization, and Antimicrobial activity of pyrazol-3-yl-pyrimidine, Pyrazole and Pyran derivatives". Inter. J. Current. Research, 11, (07), 5563-5570, 2019. DOI: https://doi.org/10.24941/ijcr.36015.07.2019

. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke. "Electronegativity: The density functional view point". J. Chem. Phys., 68, 3801-3807, 1978.

. E.J. Lien, Z.R. Guo, R.L. Li, C.T. Su. "Use of dipole moment as a parameter in drug receptor interaction and quantitative structure-activity relationship studies". J. Pharm. Sci., 71, 641-655, 1982.

. R.G. Parr, R.G. Pearson. "Absolute hardness: companion parameter to absolute electronegativity". J. Am. Chem. Soc., 105, 7512-7516, 1983.

. R.G. Parr, P.K. Chattraj. "Principle of maximum hardness". J. Am. Chem. Soc., 113, 1854-1855, 1991.

. W.P. Ozimin'ski, J.C. Dobrowolski, A.P. Mazurek. "DFT studies on tautomerism of C5-substituted 1,2,3-triazoles". J. Mol. Struct., 651-653, 697-704, 2003.

. R.G. Parr, W. Yang. "Density Functional Theory of Atoms and Molecules". International series of monographs on chemistry, Oxford University Press, New York, 16, 1989.

. S. Zaater, A. Bouchoucha, S. Djebbar, M. Brahimi. "Structure, vibrational analysis, electronic properties and chemical reactivity of two benzoxazole derivatives: Functional density theory study". Journal of Molecular Structure, 1123, 344–354, 2016.

. A.D. Becke. "Density functional thermochemistry. The rôle of exact exchange". J.Chem.Phys., 98, 5648-5652. 1993. https://doi.org/10.1063/1.464913

. C. Lee, W. Yang, R.G. Parr. "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density". Phys. Rev. B., 37, 785–789, 1988. https://doi.org/10.1103/PhysRevB.37.785

. R.I. Dennington, T. Keith, J. Millam, K. Eppinnett, W. Hovell, Gauss View Version, 2003.

. R. I. Dennington, T. Keith, J. Millam, Gauss View, Version 5. Semichem Inc., Shawnee Mission, 2009

. J. Cioslowski, D.J. Fox, Gaussian 09 , Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009.

. O. Tamer, B.S. Arslan, D. Avcı, M. Nebioglu, Y. Atalay, B. Cosut. "Synthesis, molecular structure, spectral analysis, and nonlinear optical studies on 4-(4-bromophenyl)-1-tert-butyl-3-methyl-1H-pyrazol-5-amine: a combined experimental and DFT approach". J. Mol. Struct., 1106, 89-97, 2016.

. N.M.M. Hamada. "Synthesis, Spectroscopic Characterization, and Time Dependent DFT Calculations of 1-Methyl-5-phenyl-5H-pyrido[1,2-a] quinazoline-3,6-dione and Its Starting Precursor in Different Solvents". Chemistry Open, 7, 814–823. 2018. DOI: 10.1002/open.201800146

. P. Jaramillo et al. "A further exploration of a nucleophilicity index based on the gas-phase ionization potentials". J. Mol. Struct.: THEOCHEM, 865(1-3), 68-72, 2008.

. S. Deuri, P. Phukan. "A DFT study on nucleophilicity and site selectivity of nitrogen nucleophiles". Computational and Theoretical Chemistry, 980, 49-55, 2012.

. R.K. Roy, S. Krishnamurti, P. Geerlings, S. Pal. "Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra- and Intermolecular Reactivity Sequences: Carbonyl Compounds". J. Phys. Chem. A., 102, 3746–3755, 1998.

. P.K. Chattaraj, B. Maiti. "Reactivity dynamics in atom-field interactions: A quantum fluid density functional study". J. Phys. Chem. A., 105, 169–183, 2001.

. N. Prabavathi, S.N. Nayaki. "The spectroscopic (FT-IR, FT-Raman and NMR), first order hyperpolarizability and HOMO–LUMO analysis of 2-mercapto-4(3H)-quinazolinone". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 572–583, 2014. https://doi.org/10.1016/j.saa.2014.04.041

. M.V.S. Prasad, K. Chaitanya, S.N. Udaya, V. Veeraiah. "Experimental and theoretical (HOMO, LUMO, NBO analysis and NLO properties) study of 7-hydroxy-4-phenylcoumarin and 5,7-dihydroxy-4-phenylcoumarin". J. Mol. Struct., 1047, 216–228, 2013. https://doi.org/10.1016/j.molstruc.2013.04.066

. S. Fatma, A. Bishnoi, A.K. Verma. "Synthesis, spectral analysis (FT-IR, 1H NMR, 13C NMR and UV–visible) and quantum chemical studies on molecular geometry, NBO, NLO, chemical reactivity and thermodynamic properties of novel 2-amino-4-(4-(dimethylamino)phenyl)-5-oxo-6-phenyl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carbonitrile". J. Mol. Struct., 1095, 112–124, 2015. https://doi.org/10.1016/j.molstruc.2015.04.026

. R.H. Mitchell. "Measuring Aromaticity by NMR". Chem. Rev., 101(5),1301-1315, 2001. https://doi.org/10.1021/cr990359

. E. Steiner, P.W. Fowler, L.W. Jenneskens. "Counter‐Rotating Ring Currents in Coronene and Corannulene". Angew.Chem., 40, 362-366, 2001. https://doi.org/10.1002/1521-3773(20010119).

Downloads

Published

2019-11-16

How to Cite

Hamada, N., El Sekily , M. A. ., & Mancy, S. H. . (2019). A Computational Determination of Reactivity Descriptors, Vibrational Analysis and Nuclear Magnetic Resonance of (E)-5-oxo-1-phenyl-4-(2-phenylhydrazono)-4,5-dihydro- 1H-pyrazole-3-carbaldehyde. American Scientific Research Journal for Engineering, Technology, and Sciences, 61(1), 75–91. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/5341

Issue

Section

Articles