Density Functional Theory Study on the Electrical Properties of α-CsPbX3 (X=I, Cl, Br)

  • Yuxuan Sun Tiangong University,School of Physical Science and Technology, TianJin,300387,CHN
  • Haiming Zhang Tiangong University,School of Physical Science and Technology, TianJin,300387,CHN
Keywords: All-inorganic perovskite, α-CsPbX3 (X=I, Cl, Br), electronic properties, DFT

Abstract

All-inorganic perovskite solar cells have become more important in the commercialization of the photovoltaic devices. In this study the structural, electronic properties of inorganic metal halide cubic perovskites CsPbX3 (X = I, Br, Cl) for perovskite solar cells are simulated using first-principles Density Functional Theory (DFT). The newly adjusted parameters make the calculations more accurate. These compounds are semiconductors with direct band gap energy. Results suggest that the α-CsPbX3 (X=I, Cl, Br) have a wide bandgap adjustment range with potential application in solar cells and other optoelectronic energy devices. On the basis of the electronic properties, one can expect that the α-CsPbI3 would be a better used to perovskite solar cell. α -CsPbCl3 and α-CsPbBr3 better suitable for others photovoltaic device.

References

Eperon, G. E., Leijtens, T., Bush, K. A., Prasanna, R., Green, T., Wang, J. T.-W., Snaith, H. J. (2016). Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 354(6314), 861–865.

Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., & Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088.

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643–647.

Saffari, M., Mohebpour, M. A., Rahimpour Soleimani, H., & Bagheri Tagani, M. (2017). DFT analysis and FDTD simulation of CH 3 NH 3 PbI3−xClx mixed halide perovskite solar cells: role of halide mixing and light trapping technique. Journal of Physics D: Applied Physics, 50(41), 415501.

Zhang, Y., Zhang, H., Zhang, X., Wei, L., Zhang, B., Sun, Y., … Li, Y. (2018). Major Impediment to Highly Efficient, Stable and Low-Cost Perovskite Solar Cells. Metals, 8(11), 964.

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050–6051.

Wang, Y., Zhang, T., Kan, M., & Zhao, Y. (2018). Bifunctional Stabilization of All-Inorganic α-CsPbI 3 Perovskite for 17% Efficiency Photovoltaics. Journal of the American Chemical Society, 140(39), 12345–12348.

Akkerman, Q. A., Gandini, M., Di Stasio, F., Rastogi, P., Palazon, F., Bertoni, G., Manna, L. (2017). Strongly emissive perovskite nanocrystal inks for high-voltage solar cells, 2016.194

Eperon, G. E., Paternò, G. M., Sutton, R. J., Zampetti, A., Haghighirad, A. A., Cacialli, F., & Snaith, H. J. (2015). Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A, 3(39), 19688–19695.

Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T.,Snaith, H. J. (2013). Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342(6156), 341–344.

Ramasamy, P., Lim, D.-H., Kim, B., Lee, S.-H., Lee, M.-S., & Lee, J.-S. (2016). All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chemical Communications, 52(10), 2067–2070.

Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133–A1138.

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864–B871.

Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift Für Kristallographie - Crystalline Materials, 220(5/6),567-570.

Perdew John P, Burke Kieron, Ernzerhof Matthias (1996) Generalized gradient approximation made simple, Physical Review Letters 77: 3865-3868.

Fischer, T. H., & Almlof, J. (1992). General methods for geometry and wave function optimization. The Journal of Physical Chemistry, 96(24), 9768–9774.

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192.

Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41(11), 7892–7895.

Jong, U. G., Yu, C. J., Ri, J. S., Kim, N. H., & Ri, G. C. (2016). Influence of halide composition on the structural, electronic, and optical properties of mixed CH3NH3Pb(I1-xBrx)3 perovskites calculated using the virtual crystal approximation method. Physical Review B,94.125139

Roknuzzaman, M., Ostrikov, K., Wang, H., Du, A., & Tesfamichael, T. (2017). Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Scientific Reports, 7(1), 14025.

Published
2019-11-03
Section
Articles