Physicochemical Characterization of a Biodiesel Produced from Oil Extract from the Pulp of Raffia Sese de Wild Collected in Democratic Republic of Congo

Authors

  • Tuakashikila Muamba y. Laboratory of Analytical Chemistry, Faculty of Sciences, Université de Kinshasa, B.P.190 Kinshasa XI/DRC
  • Mbanza Nganga H. Center for Research in Energy and applied Informatics (CREI), Faculty of Polytechnics, Université Kongo, Mbanza-Ngungu, DRC
  • Tumunuimo Mambote C. Center for Research in Energy and applied Informatics (CREI), Faculty of Polytechnics, Université Kongo, Mbanza-Ngungu, DRC
  • Malumba Mukaya A. Laboratory of Analytical Chemistry, Faculty of Sciences, Université de Kinshasa, B.P.190 Kinshasa XI/DRC
  • Lami Nzunzu J. Laboratory of Bioorganic Research (Larebiorg), Faculty of Pharmaceutical Sciences, Université de Kinshasa, Kinshasa XI, DRC
  • Sumuna Temo V. Laboratory of New and Renewable Energies (LNRE), Faculty of Polytechnics, Université de Kinshasa, Kinshasa XI, DRC
  • Mbuyi Katshiatshia H. Laboratory of New and Renewable Energies (LNRE), Faculty of Polytechnics, Université de Kinshasa, Kinshasa XI, DRC

Keywords:

Raffia sese of Wild oil, Transesterification, acid catalyst, base catalyst, physicochemical parameters.

Abstract

Biodiesel are produced and characterized from the oil extract from the pulp of Raphia sese de Wild collected in Democratic republic of Congo. The transesterification reaction was used in homogeneous phase with acid and base catalysts. The reaction was carried out in volume ratio 6:1 of ethanol to oil using 1% in volume of the concentrated sulfuric acid (H2SO4) or sodium hydroxide (NaOH). The yield of the reaction was 73% in transesterified oil for the acid catalyzed reaction runned during 3 hours at 60°C, and 99.2% for the base catalyzed reaction runned during 2 hours, at the same temperature.   The physiochemical properties were determined for B100 (pure biodiesel), B10 and B5 (blended biodiesel with the fossil gazole). The results show that these three types of biodiesel can be used in a diesel engine in replacement of the traditional gazole.

References

[1] Publication N°EVC 031, Centre de référence en agriculture et agroalimentaire du Québec, La production de biodiesel à partir des cultures oléagineuses (2008).
[2] S.V.Ghadge, H. Raheman. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomas Bioenergy (2005).
[3] K. Bozbas, Biodiesel as an alternative motor fuel: Production and policies in the European Union, Renewable and Sustainable Energy Reviews (2008) pp 542-552.
[4] R. Winfried, M.P. Roland, D. Alexander; L.K. Jurgen, Usability of food industry waste oils as fuel for diesel engines, Journal of Environmental Management 86 (2008) pp 427-434.
[5] M. Balat, H. Balat, A Critical review of bio-diesel as a vehicular fuel, Energy Conversion and Management 49 (2008) pp 2727-2741.
[6] F. Maa and M.A. Hanna, Biodiesel Production: A Review, Bioresource Technology, Vol. 70 (1999) 1-15.
[7] J.M. Marchetii, V.U. Miguel, A.F. Errazu, Possible methods for biodiesel production, Renewable and sustainable energy reviews 11 (2007) pp 1300-1311.
[8] A. Demirbas, Comparison of transesterification methods for production of biodiesel from vegetable oils and fats, Energy conversion and management 49 (2008) pp 125-130.
[9] S.N. Naik, Vaibhav V. Goud, Prasant K. Rout, Ajay K. Dalai, Production of first and second generation biofuels : A comprehensive review, Renewable and Sustainable Energy Reviews 14 (2010) pp 578-597.
[10] M. Mohammadi, G. D. Najafpour, H. Younesi, P. Lahijani, M. Hekari Uzir, A. Rahman Mohamed, Bioconversion of synthesis gas to second generation biofuels : A review, Renewable and Sustainable Energy reviews 15 (2011) pp 4255-4273.
[11] A.K.Agarwal, L.M. Das, Biodiesel development and characterization for use as a fuel in compression ignition engine. J Eng Gas Turbines Power (2000) pp 123.
[12] Kaul S, Kumar A, Bhatnagar A K, Goyal HB, Gupta AK. Biodiesel: a clean fuel and sustainable fuel for future, Scientific strategies for production of non-edible vegetable oils for use as biofuel, All India Seminar on national policy on non-edible as biofuels, SUTRA, IIsc Bangalore (2003).
[13] Ramadhas AS, Jayaray S Muraludharm C. Biodiesel production from high FFA rubber seed oil. Fuel, (2005).
[14] Van Gerpen JH, Biodiesel processing and production (2005) pp 1097-1107.
[15]. M. Malumba, Z.A. Fatima, N. Kabele, M. Taba, M. Tuakashikila, K.M. Mbuyi, S.N. Lusamba, Huile de la pulpe du fruit de Raphia sese de Wild, source importante de l’apport alimentaire en vitamine A, E et en acide ?-linoléique, Congo Sciences, 1 (2013) pp 49-58.
[16] Szulczyki KK, Mccark BA, International Journal of Energy and environment 1 (2010) pp 53-68.
[17]. H. Bousbaa, M. Lapueta, N. Khatir and A. Liazir, Caractérisation de la production de biodiesel à partir de déchets graisseux de sardine, Com Science et Technology 18 (2017) pp 31-42.
[18] Z. Bettahar,B. Cheknane ,K. Boutemak, Etude de la transestérification d’un mélange des huiles usagées pour la production du biodiesel, Revue des Energies Renouvelables,Vol 19 N°4 (2016) pp 603-613.
[19] G. Knothe, J.H. Van Gerpen and J. Krahl, The Biodiesel Handbook, AOCS Press, Champaign, IL (2005).
[20] K.V.Thiruvengadaravi, J. Nandagopal, P.Baskaralingam, V. Sathya Selva, S. Sivanesan, Acid-catalyzed esterification of karanja (Pongamia pinnata) oil with high free fatty acids for biodiesel production (2012) pp 1-4.
[21] C.C. Akoh, Food lipids chemistry, nutrition, and biotechnology, Akoh and Min editors, New York: Marcel Dekker (2002) pp 47-49.
[22] J. Barrault, Y. Pouilloux, J.M. Clacens, C. Vanhove, S. Bancquart, Catalysis Today 75 (2002) pp 177-181 .
[23] B. Freedman, R.O. Butterfield, E.H. Pryde, Journal of the American oil chemists Society 63 (1986) pp 1375-1380.
[24] A. Demirbas, Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transestérification and other methods a survey. Energy Covers Manage (2003) 44.
[25].Th. Silou, C. Makongo-Mokando, J.P. Profizi, A. Boussoukou et G. Maloumbi, Caractéristiques physico-chimiques et composition en acides gras des huiles de Raphia Sese et Raphia Laurenti, Tropicultura 18-1 (2000) pp 26-31.
[26] A. Abollé, K. Loukou and H. Planche,The density and Cloud Point of Diesel Oil and Mixture With the Straight Vegetable Oil (SV0): Palm, Cabbagen Cotton, Groundnut, Copra and Sunflower, Biomass and Bioenergy, Vol 33 N° 12 (2009) pp 1653-1659.
[27].E.D. Kouassi, A. Abolle, B. Yao and D. Boa, Essais de transestérification Comparées par Méthanolyse et Ethanolyse de l’Huile de Palme : Mesure de la Densité et de la Viscosité en Relation avec la Structure Moléculaire, International Journal of Innovation and Applied Studies, Vol 12 N°4 (2015) pp 918-930.
[28] A. Murugesan, C. Umarani, N. Subramania and N. Nedunchezhian, Bio-Diesel as an Alternative Fuel for Diesel Engines, A Review, Renewable and Sustainable Energy Reviews, 13 (2007) pp 653-662.
[29]. ASTM international, ASTM D86-05 Standard test method for distillation of petroleum products at atmospheric pressure, Annual Book of ASTM Standards (2006).

Downloads

Published

2018-06-22

How to Cite

Muamba y., T., Nganga H., M., Mambote C., T., Mukaya A., M., Nzunzu J., L., Temo V., S., & Katshiatshia H., M. (2018). Physicochemical Characterization of a Biodiesel Produced from Oil Extract from the Pulp of Raffia Sese de Wild Collected in Democratic Republic of Congo. American Scientific Research Journal for Engineering, Technology, and Sciences, 44(1), 89–102. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/4098

Issue

Section

Articles