Evaluation of the Steam Explosion Pretreatment Upon the Anaerobic Digestion of Water Hyacinth Biomass: Influence on Liquid and Solid Fractions

Authors

  • Danieli Ledur Kist Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves 9500, 15029 Porto Alegre, Brazil
  • Sara Isabel Pérez-Elvira Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
  • Luiz Olinto Monteggia Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves 9500, 15029 Porto Alegre, Brazil

Keywords:

Eichhornia crassipes, lignocellulose biomass, methane production, thermal hydrolysis, flash effect.

Abstract

Biochemical methane potential tests were performed to evaluate the effects of steam explosion on the liquid and solid substrates of thermal hydrolysis pretreatment applied to water hyacinth biomass. The operational conditions of the thermal hydrolysis applied the combination of two temperatures (170 and 210 ºC) and two cooking times (5 and 30 min). The higher solubilization factor was 22.9% for the sample pretreated at 210 ºC and 30 min followed by steam explosion effect (TH + SE). Steam explosion, temperature and time were, in order of importance, the more effective operational conditions for the biomass solubilization. The sample 210 ºC - 5 min TH + SE presented the higher methane production increase, in relation to the raw substrate, resulting in a increment factor of 2.43, for the solid sample. The higher methane production increase for the liquid sample was on a factor of 1.67, for sample 210 ºC - 30 min TH + SE. The higher biomethanization increase considering both biomass factors (solid + liquid) was obtained for the pretreatment 170 ºC - 30 min TH + SE. A combined model confirmed the hydrolysis limitation for the solid samples biodegradation; however, it was not clear for the prediction on the liquid samples. Micrographs evidenced the morphological changes of the solid substrate with the solubilization increase. Particle size reduction was the most effective effect of the pretreatment on the substrate morphology. Porosity increment was observed only in the surface of the sample 210 ºC - 30 min TH + SE.

References

[1] P. E. Ndimele, C. A. Kumolu-Johnson, and M. A. Anetekhai, “The Invasive Aquatic Macrophyte, Water Hyacinth {Eichhornia crassipes (Mart.) Solm-Laubach: Pontedericeae}: Problems and Prospects,” Res. J. Environ. Sci., vol. 5, no. 6, pp. 509–520, 2011.
[2] R. Chandra, H. Takeuchi, and T. Hasegawa, “Methane production from lignocellulosic agricultural crop wastes?: A review in context to second generation of biofuel production,” Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1462–1476, 2012.
[3] J. Ariunbaatar, A. Panico, G. Esposito, F. Pirozzi, and P. N. L. Lens, “Pretreatment methods to enhance anaerobic digestion of organic solid waste,” Appl. Energy, vol. 123, pp. 143–156, 2014.
[4] H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer, “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresour. Technol., vol. 199, pp. 386–397, 2015.
[5] F. Fdz-Polanco, R. Velazquez, S. I. Perez-Elvira, C. Casas, D. del Barrio, F. J. Cantero, M. Fdz-Polanco, P. Rodriguez, L. Panizo, J. Serrat, and P. Rouge, “Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.,” Water Sci. Technol., vol. 57, no. 8, pp. 1221–6, Jan. 2008.
[6] M. Carlsson, A. Lagerkvist, and F. Morgan-Sagastume, “The effects of substrate pre-treatment on anaerobic digestion systems: a review,” Waste Manag., vol. 32, no. 9, pp. 1634–50, Sep. 2012.
[7] V. B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D. B. Levin, “Biomass pretreatment: fundamentals toward application.,” Biotechnol. Adv., vol. 29, no. 6, pp. 675–685, 2011.
[8] H. Carrère, C. Dumas, a Battimelli, D. J. Batstone, J. P. Delgenès, J. P. Steyer, and I. Ferrer, “Pretreatment methods to improve sludge anaerobic degradability: a review.,” J. Hazard. Mater., vol. 183, no. 1–3, pp. 1–15, Nov. 2010.
[9] H. Shahriari, M. Warith, M. Hamoda, and K. J. Kennedy, “Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide.,” Waste Manag., vol. 32, no. 1, pp. 41–52, Jan. 2012.
[10] P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, “Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production,” Ind. Eng. Chem. Res., vol. 48, no. 8, pp. 3713–3729, Apr. 2009.
[11] Z. Yu, B. Zhang, F. Yu, G. Xu, and A. Song, “A real explosion: The requirement of steam explosion pretreatment,” Bioresour. Technol., vol. 121, pp. 335–341, 2012.
[12] X. Hou, F. Sun, D. Yan, H. Xu, Z. Dong, Q. Li, and Y. Yang, “Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment,” J. Clean. Prod., vol. 83, pp. 454–462, 2014.
[13] Y. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: a review.,” Bioresour. Technol., vol. 83, no. 1, pp. 1–11, May 2002.
[14] M. Zoulikha, M. Thierry, Z. J. Qiuyu, A. Nouviaire, and R. Sid-ahmed, “Combined steam-explosion toward vacuum and dilute-acid spraying of wheat straw. Impact of severity factor on enzymatic hydrolysis,” Renew. Energy, vol. 78, pp. 516–526, 2015.
[15] APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed. Washington: American Public Health Association, 2005.
[16] I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, a. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. van Lier, “Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays,” Water Sci. Technol., vol. 59, no. 5, p. 927, Mar. 2009.
[17] L. C. Ferreira, P. J. Nilsen, F. Fdz-polanco, and S. I. Pérez-elvira, “Biomethane potential of wheat straw?: Influence of particle size , water impregnation and thermal hydrolysis,” Chem. Eng. J., vol. 242, pp. 254–259, 2014.
[18] S. Bolado-Rodríguez, C. Toquero, J. Martín-Juárez, R. Travaini, and P. A. García-Encina, “Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse,” Bioresour. Technol., vol. 201, pp. 182–190, 2016.
[19] A. Elliston, D. R. Wilson, N. Wellner, S. R. A. Collins, I. N. Roberts, and K. W. Waldron, “Effect of steam explosion on waste copier paper alone and in a mixed lignocellulosic substrate on saccharification and fermentation,” Bioresour. Technol., vol. 187, pp. 136–143, 2015.
[20] R. Leitao, A. Vanhaandel, G. Zeeman, and G. Lettinga, “The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review,” Bioresour. Technol., vol. 97, no. 9, pp. 1105–1118, 2006.
[21] A. Donoso-Bravo, S. Pérez-Elvira, E. Aymerich, and F. Fdz-Polanco, “Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge,” Bioresour. Technol., vol. 102, no. 2, pp. 660–666, 2011.
[22] C. K. Nitsos, K. A. Matis, and K. S. Triantafyllidis, “Optimization of Hydrothermal Pretreatment of Lignocellulosic Biomass in the Bioethanol Production Process,” ChemSusChem, vol. 6, no. 1, pp. 110–122, Jan. 2013.
[23] L. C. G. Ferreira, “Evaluación De La Biodegradabilidad Anaerobia De Residuos Orgánicos Pre-Tratados Térmicamente,” Universidad de Valladolid, 2013.
[24] S. F. de Aquino, S. de Q. Silva, and C. A. de L. Chernicharo, “Considerações práticas sobre o teste de demanda química de oxigênio (DQO) aplicado a análise de efluentes anaeróbios,” Eng. Sanitária e Ambient., vol. 11, no. 4, pp. 295–304, 2006.
[25] F. Monlau, C. Sambusiti, A. Barakat, M. Quéméneur, E. Trably, J.-P. Steyer, and H. Carrère, “Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review.,” Biotechnol. Adv., vol. 32, no. 5, pp. 934–951, 2014.
[26] Y. Zheng, J. Zhao, F. Xu, and Y. Li, “Pretreatment of lignocellulosic biomass for enhanced biogas production,” Prog. Energy Combust. Sci., pp. 1–19, Feb. 2014.
[27] A. Donoso-Bravo, S. I. Pérez-Elvira, and F. Fdz-Polanco, “Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes,” Chem. Eng. J., vol. 160, no. 2, pp. 607–614, Jun. 2010.
[28] J. a. Rollin, Z. Zhu, N. Sathitsuksanoh, and Y. H. P. Zhang, “Increasing cellulose accessibility is more important than removing lignin: A comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia,” Biotechnol. Bioeng., vol. 108, no. 1, pp. 22–30, 2011.
[29] S. Anuradha Jabasingh and C. Valli Nachiyar, “Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology,” Ind. Crops Prod., vol. 34, no. 3, pp. 1564–1571, 2011.
[30] A. Ruangmee and C. Sangwichien, “Statistical optimization for alkali pretreatment conditions of narrow-leaf cattail by response surface methodology,” Songklanakarin J. Sci. Technol., vol. 35, no. 4, pp. 443–450, 2013.
[31] N. Mosier, R. Hendrickson, N. Ho, M. Sedlak, and M. R. Ladisch, “Optimization of pH controlled liquid hot water pretreatment of corn stover,” Bioresour. Technol., vol. 96, no. 18 SPEC. ISS., pp. 1986–1993, 2005.
[32] Z. Zhu, D. J. Macquarrie, R. Simister, L. D. Gomez, and S. J. M. Mason, “Microwave assisted chemical pretreatment of Miscanthus under different temperature regimes,” Sustain Chem Process, vol. 3, no. 15, pp. 1–13, 2015.
[33] M. J. Selig, S. Viamajala, S. R. Decker, M. P. Tucker, M. E. Himmel, and T. B. Vinzant, “Deposition of Lignin Droplets Produced During Dilute Acid Pretreatment of Maize Stems Retards Enzymatic Hydrolysis of Cellulose,” Biotechnol. Prog., vol. 23, no. 6, pp. 1333–1339, 2007.
[34] P. Sannigrahi, D. H. Kim, S. Jung, and A. Ragauskas, “Pseudo-lignin and pretreatment chemistry,” Energy Environ. Sci., vol. 4, no. 4, pp. 1306–1310, 2011.
[35] V. Vivekanand, E. F. Olsen, V. G. H. Eijsink, and S. J. Horn, “Effect of different steam explosion conditions on methane potential and enzymatic saccharification of birch.,” Bioresour. Technol., vol. 127, pp. 343–9, 2013.
[36] B. Danon, G. Marcotullio, and W. De Jong, “Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis,” Green Chem., vol. 16, pp. 39–54, 2014.
[37] G. Lissens, A. B. Thomsen, L. De Baere, W. Verstraete, and B. K. Ahring, “Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste,” Environ. Sci. Technol., vol. 38, no. 12, pp. 3418–3424, 2004.
[38] R. L. Souza, H. Yu, F. Rataboul, and N. Essayem, “5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System,” Challenges, vol. 3, no. 2, pp. 212–232, 2012.

Downloads

Published

2018-03-09

How to Cite

Kist, D. L., Pérez-Elvira, S. I., & Monteggia, L. O. (2018). Evaluation of the Steam Explosion Pretreatment Upon the Anaerobic Digestion of Water Hyacinth Biomass: Influence on Liquid and Solid Fractions. American Scientific Research Journal for Engineering, Technology, and Sciences, 40(1), 298–317. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/3412

Issue

Section

Articles