Detection and Characterization of Bacteriocin-like Substances Produced by Carnobacterium maltaromaticum MMF-32 and KOPRI 25789

Authors

  • Ngozi Izuchukwu Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK

Keywords:

Bacteriocin-like substances, biopreservatives, Carnobacterium maltaromaticum, foodborne pathogens, food spoilage organisms, lactic acid bacteria.

Abstract

The aims were to detect and characterize bacteriocin-like substances produced by C. maltaromaticum MMF-32 and C. maltaromaticum KOPRI 25789, isolated from smoked salmon, and to determine their inhibitory spectra against food-borne pathogens and food spoilage organisms. Carnobacterium maltaromaticum were isolated from smoked salmon, and identified phenotypically and by 16S rDNA-targeted PCR. C. maltaromaticum isolated from smoked salmon were capable of producing bacteriocin-like substances that inhibited Gram positive and Gram negative spoilage bacteria. The bacteriocin-like substances were stable at 56 ºC for 30 min and 100 ºC for 10 min and at acidic pH, and was proteinaceous in nature. This study shows that bacteriocin producing C. maltaromaticum MMF-32 and KOPRI 25789 could potentially be used as a biopreservative for minimally processed seafood.

References

[1]. M. Ghanbari, M. Rezaei, M. Jami and M. Nazari. “Isolation and characterization of Lactobacillus species from intestinal content of beluga (Huso huso) and Persian sturgeon (Acipenser persicus)”. Iranian Journal of Veterinary Research, vol. 10, pp. 152-7, Jan. 2009.
[2]. G. Rajaram, P. Manivasagan, B. Thilagavathi and A. Saravanakumar. “Purification and characterization of a bacteriocin produced by Lactobacillus lactis isolated from marine environment”. Advanced Journal of Food Science and Technology, vol. 2, pp. 138-144, Mar. 2010.
[3]. M. Maria and S. Janakiraman. “Detection of heat stable bacteriocin from Lactobacillus acidophilus NCIM5426 by liquid chromatography/mass spectrometry”. Indian Journal of Science and Technology, vol. 5, pp. 2325-2332, Mar. 2010.
[4]. G. Bierbaum and H. G. Sahl. “Lantibiotics: mode of action, biosynthesis and bioengineering”. Current Pharmaceutical Biotechnology, vol. 10, pp. 2-18, Jan. 2009.
[5]. F. Devlieghere, L. Vermeiren and J. Debevere. “New preservation technologies: possibilities and limitations”. International Dairy Journal, vol. 14, pp. 273–285, May. 2004.
[6]. J. Cleveland, T. J. Montville, I. F. Nes and M. L. Chikindas. “Bacteriocins: safe, natural antimicrobials for food preservation”. International Journal of Food Microbiology, vol. 71, pp. 1-20, Dec. 2001.
[7]. P. Rattanachaikunsopon and P. Phumkhachorn. “Lactic acid bacteria: their antimicrobial compounds and their uses in food production” Annals of Biological Research, vol. 1, pp. 218-228,
[8]. I. Tahiri, M. Desbiens, R. Benech, E. Kheadr, C. Lacroix, S. Thibault, D. Ouellet and I. Fliss. “Purification, characterization and amino acid sequencing of divergicin M35: a novel class IIa bacteriocin produced by Carnobacterium divergens M35”. International Journal of Food Microbiology, vol. 97, pp. 123– 136, Apr. 2004.
[9]. C. Paludan-Müller, P. Dalgaard, H. H. Huss, and L. Gram. “Evaluation of the role of Carnobacterium piscicola in spoilage of vacuum- and modified-packed cold-smoked salmon stored at 5 °C”. International Journal of Food Microbiology, vol. 39, pp. 155–166, Feb. 1998.
[10]. R. W. Worobo, J. V. Belkum, M. Sailer, K. Roy, J. C. Vederas and M. E. Stiles. “A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens”. Journal of Bacteriology, vol. 177, pp. 3143– 3149, Jun. 1995.
[11]. A. Métivier, M. F. Pilet, X. Dousset, O. Sorokine, P. Anglade, M. Zagorec, J. C. Piard, D. Marion, Y. Cenatiempo, and C. Fremaux. “Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization”. Microbiology, vol. 144, pp. 2837–2844, Oct. 1998.
[12]. K. Yamazaki, M. Suzuki, Y. Kawai, N. Inoue and T. J. Montville. “Inhibition of Listeria monocytogenes in cold-smoked salmon by Carnobacterium piscicola CS526 isolated from frozen Surimi”. Journal of Food Protection, vol. 66, pp. 1420– 1425, Aug. 2003.
[13]. D. –H. Kim, J. Brunt, and B. Austin. “Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss)”. Journal of Applied Microbiology, vol. 102, pp. 1654-1664, Jun. 2007.
[14]. S. Nikoskelainen, A. C. Ouwehand, S. Salminen and G. Bylund. “Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus”. Aquaculture, vol. 198, pp. 229–236, Jul. 2001.
[15]. A. G. Ponce, M. R. Moreira, C. E. del Valle, and S. I. Roura. “Preliminary characterization of bacteriocin-like substances from lactic acid bacteria isolated from organic leafy vegetables”. Swiss Society of Food Science and Technology, vol. 41, pp. 432-441, 2008.
[16]. S. Ammor, G. Tauveron, E. Dufour and I. Chevallier. “Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small scale facility I-screening and characterization of the antibacterial compounds”. Food Control, vol. 17, pp. 454-461, Jun. 2006.
[17]. C. Lewus, A. Kaiser and T. Montville. “Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat”. Applied and Environmental Microbiology, vol. 57, pp. 1683-1688, Jun. 1991.
[18]. O. J. Dunn. “Multiple contrasts using rank sums”. Technometrics, vol. 6, pp. 241–252, Aug. 1964.
[19]. W. Weisbury, S. Barns, D. Pelletier and D. Lane. “16S ribosomal DNA amplification for phylogenetic study”. Journal of Bacteriology, vol. 173, pp. 697-703, Jan. 1991.
[20]. M. D. Collins, J. A. E. Farrow, B. A. Phillips, S. Ferusu, and. D. Jones. “Classification of Lactobacillus divergens, Lactobacillus piscicola, and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, Carnobacterium”. International Journal of Systematic Bacteriology, vol. 37, pp. 310-316, Oct. 1987.
[21]. W. P. Hammes, and C. Hertel. “The genera Lactobacillus and Carnobacterium”. Prokaryotes, vol. 4, pp. 320–403, 2006.
[22]. P. P. Vijayakumar and P. M. Muriana. “A microplate growth inhibition assay for screening bacteriocins against Listeria monocytogenes to differentiate their mode-of-action”. Biomolecules, vol. 5, pp. 1178-1194, Jun. 2015.
[23]. C. Ahn and M. E. Stiles. “Plasmid-associated bacteriocin production by a strain of Carnobacterium piscicola from meat”. Applied and Environmental Microbiology, vol. 56, pp. 2503–2510, Aug. 1990.
[24]. M. J. Coventry, J. B. Gordon, A. Wilcock, K. Harmark, B. E. Davidson, M. W. Hickey, A. J. Hillier and J. Wan. “Detection of bacteriocins of lactic acid bacteria isolated from foods and comparison with pediocin and nisin”. Journal of Applied Microbiology, vol. 83, pp. 248–258, Jul. 1997.
[25]. R. Lakshmanan and P. Dalsgaard. “Effects of high-pressure processing on Listeria monocytogenes, spoilage microflora and multiple compound quality indices in chilled cold-smoked salmon”. Journal of Applied Microbiology, vol. 96, pp. 398–408, 2004.
[26]. K. Rudi, T. Maugesten, S. E. Hannevik and H. Nissen. “Explorative multivariate analyses of 16S rDNA gene data from microbial communities in modified-atmosphere-packed salmon and coalfish”. Applied and Environmental Microbiology, vol. 70, pp. 5010-5018, Aug. 2004.
[27]. J. Emborg, B. G. Laursen, and P. Dalgaard. “Significant histamine formation in tuna (Thunnus albacares) at 2 °C – effect of vacuum- and modified atmosphere-packaging on psychrotolerant bacteria”. International Journal of Food Microbiology, vol. 101, pp. 263–279, Jun. 2005.
[28]. E. Yang, L. Fan, Y. Jiang, C. Doucette and S. Fillmore. “Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts”. AMB Express, vol. 2, pp. 1-12, Sept. 2012.
[29]. S. Matamoros, M. F. Pilet, F. Gigout, H. Prévost, and F. Leroi. “Selection and evaluation of seafood-borne psychrotrophic lactic acid bacteria as inhibitors of pathogenic and spoilage bacteria”. Food Microbiology, vol. 26, pp. 638–644. Sept. 2009.
[30]. S. D. Todorov and L. M. T. Dicks. “Partial characterization of bacteriocins produced by four lactic acid bacteria isolated from regional South African barley beer”. Annals of Microbiology, vol. 54, pp. 403-413, Jan. 2004.
[31]. M. De Kwaadsteniet, S. D. Todorov, H. Knoetze, and L. M. T. Dicks. “Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Gram-positive and Gram-negative bacteria”. International Journal of Food Microbiology, vol. 105, pp. 433-444, Dec. 2005.
[32]. Y. Gao, S. Jia, Q. Gao and Z. Tan. “A novel bacteriocin with a broad inhibitory spectrum produced by Lactobacillus sakei C2, isolated from traditional Chinese fermented cabbage”. Food Control, vol. 21, pp. 76–81, 2014.
[33]. J. Jiang, B. Shi, D. Zhu, Q. Cai, Y. Chen, J. Li, K. Qi, and M. Zhang. “Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish”. Food Control, vol. 23, pp. 338–344, Feb. 2012.
[34]. K. Yamazaki, M. Suzuki, Y. Kawai, N. Inoue and T. J. Montville. “Purification and characterization of a novel class IIa bacteriocin, piscicocin CS526, from Surimi-associated Carnobacterium piscicola CS526”. Applied and Environmental Microbiology, vol. 7, pp. 54–557, Jan. 2005.
[35]. A. Weiss and W. P. Hammes. “Lactic acid bacteria as protective cultures against Listeria spp. on cold smoked salmon”. European Food Research and Technology, vol. 222, pp. 343–346, Feb. 2006.
[36]. M. I. Afzal, C. C. G. Ariceaga, E. Lhomme, N. K. Ali, S. Payot, J. Burgain, C. Gaiani, F. Borges, A.–M, Revol-Junelles, S. Delaunay and C. Cailliez-Grimal, “Characterization of Carnobacterium maltaromaticum LMA 28 for its positive technological role in soft cheese making”. Food Microbiology, vol. 36, pp. 223-230, Jun. 2013.
[37]. M. S. Barbosa, S. D. Todorov, Y. Belguesmia, Y. Choiset, H. Rabesona, I. V. Ivanova, J. –M. Chobert, T. Haert and B. G. D. M. Franco. “Purification and characterization of the bacteriocin produced by Lactobacillus sakei MBSa1 isolated from Brazilian salami”. Journal of Applied Microbiology, vol. 116, pp. 1195-1208, Feb. 2014.
[38]. W. Wang and H. Wang. “The effect of lactic acid bacteria in food and feed and their impact in food safety”. International Journal of Food Engineering, http://dx.doi.org/10.1515/ijfe-2013-0042, Apr. 2014.
[39]. M. Suzuki, T. Yamamoto, Y. Kawai, N. Inoue and K. Yamazaki. “Mode of action of piscicocin CS526 produced by Carnobacterium piscicola CS526”. Journal of Applied Microbiology, vol. 98, pp. 1146–1151, Feb. 2005.
[40]. D. Drider, G. Firmland, Y. Héchard, L. M. McMullen and H. Prévost. “The continuing story of class IIa bacteriocins”. Microbiology and Molecular Biology Reviews, vol. 70, pp. 564–582, Jun. 2006.
[41]. K. Naghmouchi, D. Drider, E. Kheadr, C. Lacroix, H. Prévost and I. Fliss. “Multiple characterizations of Listeria monocytogenes sensitive and insensitive variants to divergicin M35, a new pediocin-like bacteriocin”. Journal of Applied Microbiology, vol. 100, pp. 29–39, Nov. 2006.
[42]. F. Duffes, P. Jenoe and P. Boyaval. “Use of two-dimensional electrophoresis to study differential protein expression in divercin V41-resistant and wild-type strains of Listeria monocytogenes”. Applied and Environmental Microbiology, vol. 66, pp. 4318–4324, Oct. 2000.
[43]. V. Vadyvaloo, S. Arous, A. Gravesen, Y. Héchard, R. Chauhan-Haubrock, J. W. Hastings and M. Rautenbach. “Cell-surface alterations in class IIa bacteriocin resistant Listeria monocytogenes strains”. Microbiology, vol. 150, pp. 3025–3033, Sept. 2004.
[44]. S. Calvez, A. Rincé, Y. Auffray, H. Prévost and D. Drider. “Identification of new genes associated with intermediate resistance of Enterococcus faecalis to divercin V41, a pediocin-like bacteriocin”. Microbiology, vol. 153, pp. 1609–1618, May 2007.
[45]. G. T. Tessema, T. Møretrø, A. Kohler, L. Axelsson and K. Naterstad. “Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P”. Applied and Environmental Microbiology, vol. 75, pp. 6973–6980, Nov. 2009.
[46]. S. D. Todorov and L. M. T. Dicks. “Partial characterization of bacteriocins produced by four lactic acid bacteria isolated from regional South African barley beer”. Annals of Microbiology, vol. 54, pp. 403-413, 2004
[47]. H. –J. Lee, Y. –J. Joo, C. –S. Park, S. –H. Kim, I. –K. Hwang, J. –S. Ahn and I. –T. Mheen. “Purification and characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis H-559 isolated from Kimchi”. Journal of Bioscience and Bioengineering, vol. 88, pp. 153-159, 1999.
[48]. L. De Vuyst and E. J. Vandamme. “Antimicrobial potential of lactic acid bacteria”, In: Bacteriocin of Lactic acid Bacteria, L. De Vuyst and E. J. Vandamme (Ed.), London, Blackie, 1994, pp. 91-142.
[49]. R. W. Jack, J. Wan, J. Gordon, K. Harmark, B. E. Davidson, A. J. Hillier, R. E. H. Wettenhall, M. W. Hickey, and M. J. Coventry. “Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126”. Applied and Environmental Microbiology, vol. 62, pp. 2897–2903, Aug. 1996.
[50]. D. –H. Kim, and B. Austin. “Characterization of probiotic carnobacteria isolated from rainbow trout (Oncorhynchus mykiss) intestine”. Letters in Applied Microbiology, vol. 47, pp. 141-147, Sept. 2008.
[51]. M. A. Murtaza, M. Shahid, I. Hafiz and G. Mueen-ud-Din (2012). “International conference on ecological, environmental and biological sciences (ICEEBS'2012)” Jan. 7-8, 2012.
[52]. D. K. D. Dalié, A. M. Deschamps and F. Richard-Forget. “Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review”. Food Control, vol. 21, pp. 370–380, Apr. 2010.
[53]. S. Saranya and N. Hemashenpagam. “Antagonistic activity and antibiotic sensitivity of lactic acid bacteria from fermented dairy products”. Advances in Applied Science Research vol. 2, pp. 528-534, 2011.
[54]. C. D. Muyncka, A. I. J. Leroya, S. D. Maeseneirea, F. Arnaut, W. Soetaert and E. J. Vandammea. “Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites”. Microbiology Research vol. 159, pp. 339-346, 2004.
[55]. V. Mandal, S. K. Sen and N. C. Mandal. “Optimized culture conditions for bacteriocin production by Pediococcus acidilactici LAB 5 and its characterization”. Indian Journal of Biochemistry and Biophysics, vol. 45, pp. 106-110, Apr. 2008.
[56]. G. Vignolo, M. Kairuz, A. Ruiz Holgado and G. Oliver. “Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705”. Journal of Applied Bacteriology, vol. 78, pp. 5-10, Jan. 1995.
[57]. S. Sadiq, M. Imran, M. N. Hassan, M. Iqbal, Y. Zafar and F. Y. Hafeez. “Potential of bacteriocinogenic Lactococcus lactis subsp. lactis inhabiting low pH vegetables to produce nisin variants”. LWT - Food Science and Technology, vol. 59, pp. 204-210, Nov. 2014.
[58]. S. T. Ogunbanwo, A. I. Sanni and A. A. Onilude. “Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1”. African Journal of Biotechnology, vol. 2, pp. 219-227, 2003.
[59]. A. Cherif, H. Ouzari, D. Daffonchio, H. Cherif, K. B. Slama, A. Hassen, S. Jaoua and A. Boudabous. “Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil”. Letters in Applied Microbiology vol. 32, pp. 243–247, Apr. 2001.
[60]. R. Khalil, Y. Elbahloul, F. Djadouni, and S. Omar. “Isolation and partial characterization of a bacteriocin produced by a newly isolated Bacillus megaterium 19 strain”. Pakistan Journal of Nutrition, vol. 8, pp. 242-250, 2009.
[61]. K. Eckart. “Mass spectrometry of cyclic peptides”. Mass spectrometry Review, vol. 13, pp. 23–55, 1994.
[62]. C. Richard, A. Brillet, M. F. Pilet, H. Prevost and D. Drider. “Evidence on inhibition of Listeria monocytogenes by divercin V41 action”. Letters in Applied Microbiology, vol. 36, pp. 288-292, 2003.

Downloads

Published

2017-09-07

How to Cite

Izuchukwu, N. (2017). Detection and Characterization of Bacteriocin-like Substances Produced by Carnobacterium maltaromaticum MMF-32 and KOPRI 25789. American Scientific Research Journal for Engineering, Technology, and Sciences, 35(1), 215–235. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/3264

Issue

Section

Articles