Wind Energy Conversion System for Harmonics and Inter-harmonic Analysis

  • Emmanuel Hernández Universidad del Istmo, Calle Sta. Cruz s/n Av. Universidad, Oaxaca. C.P. 70760, México
  • Miguel Ángel Hernández Universidad del Istmo, Calle Sta. Cruz s/n Av. Universidad, Oaxaca. C.P. 70760, México
  • Hugo Jorge Cortina Marrero
  • Reynaldo Iracheta
Keywords: Doubly-fed induction machine, harmonic and inter-harmonic analysis, wind energy conversion system.


In this research, a harmonic and inter-harmonic analysis is presented for two types of wind energy conversion systems (WECS): a squirrel cage induction machine and doubly-fed induction machine because of the incorporation of power electronics in these systems, such as soft-starter and power converter that distort the voltage and current waveform. The analysis is based on the well-known steady-state induction machine model, additionally, a dynamic-state model is developed to compare the steady-state model validating the results of the simulations obtaining a harmonic and inter-harmonic model, in steady-state, clear and precise of the wind energy conversion system.


[1] T. Ackermann. “Wind power in power systems”, Wiley, 2005.
[2] J. Martínez García, M. García-García, M. P. Comech, D. García-García, “Modelling and simulation of an asynchronous wind turbine of squirrel cage”, ICREPQ’04 Proceeding, 31 March – 02 April 2004, Barcelona.
[3] J. G. Slootweg, W. L. Kling, “Is the answer blowing in the wind?” IEEE Power & Energy Magazine, pp 26-33, Nov/Dec 2003.
[4] R. Datta, V. T. Ranganathan, “Variable-speed wind power generation using doubly-fed wind rotor induction machine a comparison with alternative schmes.”, IEEE Transactions on Energy Conversion, vol. 17, no. 3, p.p. 414-421, Sept. 2002.
[5] P. C. Krause, Analysis of Electric Machinery. New York, NY, USA: McGraw-Hill, 1987.
[6] E. H. Camm, M. R. Behnke, O. Bolado, M. Bollen, M. Bradt, C. Brooks, W. Dilling, M. Edds, W. J. Hejdak, D. Houseman, S. Klien, F. Li, J. Li, P. Maibach, T. Nicolai, J. Patino, S. V. Pasupulati, N. Samaan, S. Saylors, T. Seibert, T. Smith,M. Starke, and R.Walling,“Wind power plant grounding, overvoltage protection and insulation coordination: IEEE PES Wind Plant Collector System Design Working Group,” in Proc. IEEE Power and Energy Soc. General Meet., 2009, pp. 1–8.
[7] L. Fan, S. Yuvurajan and R. Kavasseri, “Harmonic Analysis of a DFIG for a Wind Energy Conversion System” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 181-190, March. 2010.
[8] A. Tapia, G. Tapia, J.S. Ostolaza, J.R. Saenz, .“Modeling and control of a wind turbine driven doubly fed induction generator.”, IEEE Transactions on Energy Conversion, vol. 18, no. 2, pp. 194-204, June 2003.
[9] J. Morren, S.W.H. Haan, .“Ride through of wind turbines with doubly fed induction generator during a voltage dip.”, IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 435-441, June 2005.
[10] I. Erlich, W. Winter, A. Dittrich,“Advanced Grid Requirements for the Integration of Wind Turbines into the German transmission system.”, 2006 IEEE Power Engineering Society General Meeting, 18-22 June 2006, pp. 7.
[11] Peña R., Clare J.C. y Ascher G.M., “Doubly Fed Induction Generator using back to back PWM converters and its application to variable-speed wind energy generation”, IEE Proceeding Electric Power Applications, Vol. 43, No. 3, pp. 231-241, Mar 1996.
[12] Müller S., Deicke M. y De Doncker R., “Doubly Fed Induction Generator Systems for Wind Turbines”, IEEE Industry Applications Magazine, pp. 26-33, May-June 2002.
[13] Kundur Prabha, Power System Stability and Control. New York: McGraw-Hill, 1994.
[14] Krause Paul, Wasynczuk Oleg and Sudhoff Scott, Analysis of Electric Machinery. New York: IEEE Press, 1995