Double Walled Carbon Nanotube Simulator to Achieve Higher Accuracy in Finding Optical and Electrical Properties of the Tubes

  • Adnan Siraj Rakin Bangladesh University, Asad Gate, Dhaka 1207, Bangladesh (use 10 times new roman; italic)
  • Dr. Sharif Md. Mominuzzaman Bangladesh University of Engineering and technology, Azimpur, Dhaka 1000, Bangladesh
Keywords: Radial Breathing Mode, Double Walled Carbon Nanotube Simulator, Interaction.

Abstract

Many Software have been made to predict the optical transition energy of Single Walled Carbon Nanotube. Predicting the Radial Breathing Mode frequency for Double Walled Carbon Nanotube has been really tough due to inter tube interaction. Experimental values show clear indication that these frequencies and Transition energies depends heavily on inter tube interaction and chirality of the Nanotube. All the previous software to predict any kinds of Band structure of CNT failed to take this effects into account. Moreover most of them gives fairly accurate value for Single Walled Carbon Nanotube. Here for the first time a software was built to predict different kinds of Parameter for Double Walled Carbon Nanotube. This software can be significant in simulating Resonant Raman Spectroscopy for DWNT. The equations used to predict the Band Structure of DWNT in this software is also the most accurate one till date.

References

[1] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L.Wirtz, Raman imaging of graphene, Solid State Communications 143 (2007) .
[2] Henrard, L.; Herna dez, E.; Bernier, P.; Rubio, A.Phys. ReV.B 1999, 60, R8521.
[3] Rao, A. M.; Chen, J.; Richter, E.; Schlecht, U.; Eklund, P. C.; Haddon, R. C.;Venkates waran, U. D.; Kwon, Y.-K.; Toma ek, D.Phys. ReV. Lett. 2001, 86,3895.
[4] R. Pfeiffer, Ch. Kramberger, F. Simon, H. Kuzmany, September 24, 2013.
[5] N. Kishi, S. Kikuchi, P. Ramesh, T. Sugai, Y. Watanabe, and H. Shinohara, J. Phys. Chem. B 110, 24816 2006. Lei Sh, Leimei Sheng, Liming Y, Kang An, and Xinluo Zhao. March 2011.
[6] Rols, S; Righi, A.; Alvarez, L; Anglaret, E; Almairac, R; Journet, C.; Bernier, P; Sauvajol, J. L; Benito, A. M; Maser, W. K.; Munz, E; Martinez, M. T; de la Fuente, G. F; Girard, A; Ameline, J. C.Eur. Phys J. B 2000, 18, 201.
[7] A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, Y. Nishina: Evidence for size dependent discrete dispersions in single-wall nanotubes, Phys. Rev. Lett. 78 ,4434(1997).
[8] S. Reich, J. Maultzsch, C. Thomsen, P. Ordej´ on: Tightbinding description of graphene, Phys. Rev. B66, 035412 (2002).
[9] Jamal, G. R. A. et al.: Elec. Engg., Instn. Engrs., Bangladesh, 37 (II), December 2011.
[10] https://en.wikipedia.org/wiki/List_of_software_for_nanostructures_modeling
[11] http://www.jcrystal.com/products/wincnt/
[12] Rakin, Adnan Siraj, and S. M. Mominuzzaman. "Finding the Chirality of Semiconducting DWCNT Using Empirical Equation of Radial Breathing Mode Frequency of RRS and Optical Transition Energy." Journal of Nanoscience and Nanoengineering 2, no. 5 (2016): 34-39.
[13] Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Science, Beijing 100080, P. R. China, July 12, 2002; In Final Form: June 2, 2003.
[14] Minggang Xia, Shengli Zhang, Xianjun Zuo, Erhu Zhang, Shumin Zhao, Jian Li, Lei Zhang, Yachao Liu, and Run Liang, Xi’an Jiaotong University, Department of Applied Physics, Xi’an 710049, China, 23 November 2004.
[15] Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment J. Maultzsch,1,* H. Telg,1 S. Reich,2,† and C. Thomsen1, 28 November 2005.
Published
2016-11-28
Section
Articles