Numerical Study of Reacting Flow in a Methane Burner with a Detailed Reaction Mechanism

Authors

  • Ayedh Alajmi Public Authority for Applied Education and Training, Kuwait
  • Ibahim Abdalla Mechanical Engineering Department, De Montfort University, Leicester, UK
  • Jasem Alotaibi Public Authority for Applied Education and Training, Kuwait

Keywords:

Methane, EXGAS, GRI, Reaction mechanisms.

Abstract

In this paper, a numerical study of reacting flow in a methane burner using the Reynolds Averaged Navier-Stokes equation (RANS) is presented. A shear-stress transport turbulence model and presumed shape probability density functions (Pdfs) are used. Detailed chemical kinetic mechanism for the methane oxidation with 100 species and a 448 steps reaction has been developed using EXGAS software in this study. Moreover, simulations have been carried out to investigate the applicability of this study. The predicted temperature profiles agreed well with those obtained from Gas Research Institute (GRI) mechanism and the available experimental data. Other variables including CO2 predicted by the GRI and the EXGAS mechanisms also show good agreement.

References

[1] Peters. N. (1986) Laminar flamelet concepts in turbulent combustion, Twenty first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1231-1250.
[2] Poinsot, T. and Veynante, D. Theoretical and numerical combustion. RT Edwards, Inc. 2005.
[3] Champion, M. and Libby, P.A. (1984) Turbulent premixed combustion in a boundary layer. Combustion Science and Technology, volume 38. number 5. pp. 267-291.
[4] Launder, B.E and Spalding. D.B, (1974) The numerical computation of turbulent flows, Comput. Meths. Appl. Mech. Eng. 3, pp. 269-289.
[5] Liew. S.K, Bray. K.N.C, Moss. J.B, (1981) Flamelet model of turbulent non-premixed combustion, Combust. Sci. Technol. 27 . pp. 69-73.
[6] Balthasar. M, Heyl. H, Mau. F, Schmitt. F, Bockhorn. H. (1996) Flamelet modeling of soot formation in laminar ethyne/air diffusion flames. Proc. Combust. Inst. 26 . pp. 2369-2377.
[7] Pitsch, H., Barths, H., Peters, N., 1996. Three-dimensional modeling of NOx and soot formation in DI-diesel engines using detailed chemistry based on the interactive flamelet approach, SAE-paper 962057.
[8] Mauss, F., Balthasar, M., Simplification of a detailed kinetic soot model for the application in 3D-programs. In: Fourth International Conference on Technologies and Combustion for a Clean Environment, Lissabon, (1997). pp. 17.
[9] Lentini, D., Puri, I., (1995) Stretched laminar flamelet modeling of turbulent chloromethane-air nonpremixed jet Pames. Combust. Flame 103 . pp. 328.
[10] Pfuderer, D.G., Neuber, A.A., Fruchtel, G., Hassel, E.P., Janicka, J. (1996) Turbulence modulation in jet diffusion flames: modeling and experiments. Combust. Flame 106, pp. 301.
[11] Vranos, A., Knight, B.A., Proscia, W.M., Chiappetta, L., Smooke, M.D., (1992) Nitric ox-ide formation and differential diffusion in a turbulent methane-hydrogen diffusion flame. In: 24th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 377.
[12] Sanders, J.P.H., Chen, J.-Y., Gokalp, I. (1997) Flamelet-based modeling of NO formation in turbulent hydrogen jet diffusion flames. Combust. Flame. 111, pp. 1-15.
[13] Bowman, C.T., Hanson, R.K., Davidson, D.F., Gardiner, W.C. Jr., Lissianski, V., Smith, G.P., Golden, D.M., Frenklach, M.,Wang, H., Goldenberg, M., 1995. GRI-Mech Version 2.11, http://www.gri.org/.
[14] Warth, V., Stef. N., Glaude, P.A., Battin-Leclerc, F., Scacchi, G., Cme. G.M., (1998). Computer based generation of reaction mechanisms for gas-phase oxidation. Combust. Flame 114, pp. 81-102.
[15] Buda. F., Bounaceur. R., Warth. V., Glaude. P.A., Fournet. R., Battin-Leclerc. F., (2005) Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K. Combust. Flame, 142, pp. 170-186.
[16] Biet. J., Hakka M.H., Warth. V., Glaude. P.A,. Battin-Leclerc. F. (2008) Experimental and Modeling Study of the Low-Temperature Oxidation of Large Alkanes. Energy and Fuel, 22 pp. 2258-2269.
[17] Glaude. P.A., Battin-Leclerc. F., Fournet. R, Warth. V., Cme. G.M., Scacchi. G. (2000) Construction and simplification of a model for the oxidation of alkanes. Combust. Flame 122, pp. 451-462.
[18] Touchard. S., Fournet. R., Glaude. P.A., Warth. V., Battin-Leclerc. F., Vanhove. G., Ribaucour. M., Minetti. R., (2005) Proc. Combust. Inst. 30, pp. 1073-1081.
[19] Modest, M.F, Radiative heat transfer, Academic Press, 2003.
[20] Barlow, R. S., Chen, J.-Y., Smith, N. S. A. and Bilger, R. W. (1999), Combust. Flame 117, pp. 4-31.
[21] Grosshandler, W.L. (1993) RADCAL: A narrow-band model for radiation calculations in a combustion
[22] Ilbasa, M., Ylmaza, I., Kaplan, Y., (2005) Investigations of hydrogen and hydrogenhydro-carbon composite fuel combustion and NOx emission characteristics in a model combus-tor. International Journal of Hydrogen Energy 30, pp.1139-1147. environment. NIST Technical Note 1402 (April).
[23] Chen, J.Y., (1998) Experimental and numerical study of a highly diluted turbulent diffu-sion flame close to blow-out. In: 27th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 307.
[24] Chou, C.-P., Chen, J.-Y., Yam, C.G., Marx, K., (1998) Numerical modeling of NOx for-mation in laminar bunsen flames- a flamelet approach. Combust. Flame 114, pp. 420-435.
[25] Battin-LeClerc. F, Bounaceur. R, Cme. G.M, (2004) EXGAS-ALKANES, a software for the automatic generation of mechanisms for the oxidation of alkanes, CNRS-DCPR.
[26] Williams, F.A. Combustion theory. Perseus Books, 1985.
[27] Borghi, R. and Champion, M. Modelisation´ et theorie´ des flammes. Editions Technip. 2000.
[28] Menter, F.R., (1993) Zonal two Equation k-! Turbulence Models for Aerodynamic Flows, AIAA 93-2906.
[29] Cant, R.S., Rogg, B., Bray, K.N.C., (1989) Flamelet modelling in premixed turbulent combustion, Proceeding of the Joint Meeting of the British and French Sections of the Combustion Institute, Rouen, France, pp. 191-196.
[30] Liew, S.K., Bray, K.N.C., Moss, J.B. (1984) A stretched laminar flamelet model of turbulent nonpremixed combustion. Combust. Flame 56, 1984.

Downloads

Published

2016-08-17

How to Cite

Alajmi, A., Abdalla, I., & Alotaibi, J. (2016). Numerical Study of Reacting Flow in a Methane Burner with a Detailed Reaction Mechanism. American Scientific Research Journal for Engineering, Technology, and Sciences, 23(1), 283–300. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/2005

Issue

Section

Articles