Time, a three-directional Dimension I
Keywords:
3S 3T, three-directional time, arrows of time, quantum mechanics, double-slit, experiment, entanglementAbstract
This paper revisits the concept of multidimensional time, extending discussions to incorporate orthogonal time dimensions ? and ? alongside the familiar linear t-axis, in resemblance to space and its intimate intertwinement with time. The presented framework explores how time's multidimensional nature might interact with spatial dimensions and quantum phenomena such as superposition and entanglement. Rather than redefining the arrow of time, this work underscores the need to broaden our perspective on time as multidirectional. By questioning certain conventional views about time’s nature and representation, this model advocates for a forward-moving perspective that aligns with quantum mechanics. Though experimental validation remains a challenge, the model lays a foundation for further theoretical exploration and discussion.
References
. Muchow, G. “Is the Dimension Time Three-Directional?” International Journal of Trend in Scientific Research and Development (IJTSRD), Volume 4 Issue 5, July-August 2020.
. (a) Bohm, D. "A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables, I and II." Phys. Rev., 85, 166, 1952.
(b) Bohm, D. Wholeness and the Implicate Order. Routledge (1980).
. (a) Cosmological time arrow: Was ist die Zeit; nachgefragt; Dialogverlag Münster, 2010.
(b) [URL] http://www.exactlywhatistime.com/physics-of-time/the-arrow-of-time/.
(c) Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape (2005).
(d) Carroll, S. M. From Eternity to Here: The Quest for the Ultimate Theory of Time. Penguin (2010).
. (a) Anderson, P. W. "More is different: Broken symmetry and the nature of the hierarchical structure of science." Science 177, 4047, 393–396 (1972).
(b) Brout, R. & Englert, F. "Broken Symmetry and the Mass of Gauge Vector Mesons." Phys. Rev. 13, 9, 321–323 (1964).
(c) Higgs, P. W. "Broken Symmetries and the Masses of Gauge Bosons." Phys. Rev. 13, 16, 508–509 (1964).
. (a)Nair, S. S. R., et al. “Entropy-driven crystallization,” J. Chem. Phys., 2017, 146(15), 154707, OXFORD ACADEMIC.
(b)Cheon, G. A. "Entropy and protein folding," Bioinformatics,
. Greene, B. The Fabric of the Cosmos: Space, Time, and the Texture of Reality. Random House, N.Y., 2004, pp. 161 ff.
. Gell-Mann, M. & Hartle, J. B. "Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology." arXiv:gr-qc/9304023v2 (2005).
. Elouard, C., Auffèves, A., Clusel, M., "Stochastic Thermodynamics in the Quantum Regime", 2015, arXiv preprint arXiv:1507.00312.
. Partovi, M. H. “Verschränkung versus Stoßzahlansatz: Disappearance of the Thermodynamic Arrow in a High-Correlation Environment.” arXiv:0708.2515v1 (quant-ph).
. Bradley H. Dowden, “The Arrow of Time”, Internet Encyclopedia of Philosophy, 2010.
. Reichenbach, H. Les fondements logiques des quanta, Annales de l’IHP, tome 13, 2, 1952–53, pp 109–158; available on www.numdam.org/item?id=AJHP_1952_ _13_2_109_0.
. Barbour, J. The End of Time. Oxford University Press, 1999, ISBN 0-297-81985-2
. Maudlin, T. The Metaphysics within Physics. Oxford University Press, 2007.
. Correspondence with Michele Besso, 1903–1905, Speziali, P. (Ed.), Hermann, 1972.
. Minkowski, H. Space and Time, p. 39, Minkowski Institute Press, ISBN 978-0-9879871-4-3.
. Schrödinger, E. "Quantisierung als Eigenwertproblem" [Quantization eigenvalue problem], Annalen as an der Physik, 384(4), 361–376, 1983.
. Fein, Y. Y., Geyer, P., Zwick, P., et al. (2019). "Quantum superposition of molecules beyond 25 kDa," Nature Physics, DOI: 10.1038/s41567-019-0663-9.
. Jin, J., et al. (2023). "Time-resolved double-slit experiment with entangled photons," arXiv, DOI: arXiv:1304.4943.
. Wheeler, J. A. “Wheeler's delayed-choice experiment,” in Quantum Theory and Measurement (edited by J. A. Wheeler and W. H. Zurek), Princeton University Press, 1984.
. Bonacci, E., “Quantum Entanglement from Multidimensional Time”, Int Jr. of Mathematical Sciences & Applications, Vol. 13, No. 1, 2023.
. Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape (2004).
. Davies, P. C. W. The Physics of Time Asymmetry. University of California Press, 1974.
. Jönsson, C. “Interferenz von Elektronen am Doppelspalt”; Zeitschrift für Physik, 161, 454, 1961.
. Tonomura, A., et al. “Experimental observation of quantum interference effects in electron diffraction”; American Journal of Physics, 57(2), 117–120.
. Einstein, A., Podolsky, B., Rosen, N. “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Physical Review, 47, pp. 777–780, 1935.
. Freedman, S. J., Clauser, J. F. “Experimental Test of Local Hidden-Variable Theories”, Physical Review Letters, 28, pp. 938–941, 1972.
. Wineland, D. J., et al. “Beryllium Ions Entangled at NIST,” 1995, NIST team.
. Researchers: A team at the University of California, Santa Barbara (UCSB), 1998, “Electron Entanglement.”
. Colciaghi, P., et al. “Einstein-Podolsky-Rosen experiment with two Bose-Einstein condensates,” Phys. Rev. X, 2023, DOI: 10.1103/PhysRevX.13.021031.
. Hensen, B., Giustina, M., Zeilinger, A., Hanson, R., et al., “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers,” Nature, 526, pp. 682–686, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 American Scientific Research Journal for Engineering, Technology, and Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who submit papers with this journal agree to the following terms.