Gamma Cameras: Exploring the Technology, Applications, and Future Prospects
Keywords:
Gamma camera, Nuclear medicine, Collimators, Scintillators, Photomultiplier tubesAbstract
Gamma cameras, pivotal in nuclear medicine imaging, provide crucial insights into the physiological functions of organs and tissues. This study delves into the technology behind gamma cameras, their applications, and future prospects. Gamma rays, high-energy electromagnetic radiation, are detected and converted into images by gamma cameras. The research combined field observations at a tertiary hospital’s Nuclear Medicine Centre with a comprehensive literature review. Direct interactions with medical professionals and observations of gamma camera procedures provided practical insights into the operational principles and clinical applications. Gamma cameras, evolving from early scintillation counters to modern digital detectors, consist of key components like collimators, scintillators, photomultiplier tubes, and advanced imaging software. These devices are integral in diagnosing and monitoring conditions in cardiology, oncology, neurology, endocrinology, and orthopedics. Technological advancements, such as solid-state detectors, multi-pinhole collimators, and AI-enhanced image processing, have significantly improved image quality, diagnostic accuracy, and patient safety. Future prospects include personalized medicine, molecular imaging, AI and machine learning integration, multi-modal imaging, and theranostics, promising enhanced diagnostic precision and treatment outcomes. This study underscores the evolving capabilities of gamma cameras and their indispensable role in modern healthcare.
References
. https://en.wikipedia.org/wiki/Gamma_camera (Access on 03/06/2024)
. https://www.nrc.gov. "Gamma Radiation." Accessed 03/08/2024.
. Knoll, G.F. (2010) Radiation Detection and Measurement. 4th Edition, Wiley, Hoboken, 217.
. Snyder, W. S. "Gamma Rays: A Review of Properties and Uses." Journal of Radiological Protection 29, no. 2 (2009): 151-175.
. Harrison, R. G. "Gamma-Ray Detection and Measurement." Journal of Nuclear Physics 23, no. 4 (2011): 123-145.
. Sullivan, J. F. Introduction to Nuclear Radiation Detection. CRC Press, 2012.
. Villard, P. "Sur les rayons de radium." Comptes Rendus de l'Académie des Sciences 131 (1900): 1019-1021.
. Gordon, R. "The Discovery of Gamma Rays." Physics Today 20, no. 8 (1967): 51-54.
. Anger, H. O. "A New Technique for the Identification of Radioactive Isotopes." Science 127, no. 3301 (1958): 397-398.
. Hollister, T. B. "The Sodium Iodide Scintillation Detector for Gamma-Ray Spectroscopy." Science 139, no. 3553 (1963): 649-650.
. Beck, R. R., R. D. C. Jensen, and M. H. Palmer. "The Anger Camera." Journal of Nuclear Medicine 15, no. 7 (1974): 669-675.
. Kiepert, J. P., J. P. Belanger, and R. R. Beck. "New Collimator Designs for Improved Resolution in Gamma Cameras." Journal of Nuclear Medicine 24, no. 5 (1983): 381-389.
. Cherry, S. R., J. A. Sorensen, and M. E. Phelps. Physics in Nuclear Medicine. Saunders, 2001.
. Lassen, M., K. L. L. Muller, and T. D. Smith. "Recent Advances in Molecular Imaging: A Review." European Journal of Nuclear Medicine and Molecular Imaging 44, no. 3 (2017): 415-423.
. Cherry, S. R., Sorenson, J. A., & Phelps, M. E. (2012). Physics in Nuclear Medicine. Elsevier Health Sciences.
. Krenning, E. P., E. J. J. Bakker, and F. E. J. K. van Eijck. "Collimators for gamma cameras: a review." Seminars in Nuclear Medicine 37, no. 1 (2007): 58-68.
. Wagner, H. N., G. E. Y. G. C. Dunn, and W. D. K. F. Hamilton. "Slant hole collimation: a new method for improving resolution in gamma cameras." Journal of Nuclear Medicine 24, no. 6 (1983): 723-730.
. Hollister, T. B. "Converging collimators in gamma cameras: their benefits and limitations." Journal of Nuclear Medicine 23, no. 5 (1982): 414-420.
. Berg, W., F. A. M. Verhoeff, and M. M. D. van Gool. "Evaluation of a fan beam collimator in a dual-head gamma camera." Journal of Nuclear Medicine 25, no. 8 (1984): 1082-1087.
. Dawson, P., S. F. M. Mann, and D. M. Lowe. "Pinhole collimation for imaging small organs." Medical Physics 17, no. 2 (1990): 220-224.
. Gonzalez, R. C., R. E. Woods, and S. L. Eddins. Digital Image Processing Using MATLAB. CRC Press, 1999.
. Zhou, X., J. L. K. Chen, and A. S. K. Song. "Advancements in computer processing for gamma camera systems." Medical Imaging Technology 28, no. 3 (2011): 140-148.
. Miller, D. L., B. A. L. Roth, and J. R. Goeldner. "Real-time image processing and display in nuclear medicine." Radiology 236, no. 2 (2005): 496-503.
. Gordon, I., G. J. K. Bottrill, and P. P. McCullough. "Technetium-99m in nuclear medicine: A review." Seminars in Nuclear Medicine 34, no. 1 (2004): 12-25.
. Hollister, T. B. "Converging collimators in gamma cameras: their benefits and limitations." Journal of Nuclear Medicine 23, no. 5 (1982): 414-420.
. Hughes, D. J. "The use of sodium iodide scintillators in gamma cameras." Physics in Medicine & Biology 49, no. 18 (2004): 4359-4376.
. Gonzalez, R. C., R. E. Woods, and S. L. Eddins. Digital Image Processing Using MATLAB. CRC Press, 1999.
. Sandler, M. P., Patton, J. A., Coleman, R. E., Wackers, F. J. T., & Gottschalk, A. (2003). Diagnostic Nuclear Medicine. Lippincott Williams & Wilkins.
. Delbeke, D., Coleman, R. E., Guiberteau, M. J., Brown, M. L., Royal, H. D., Siegel, B. A., & Townsend, D. W. (2006). Procedure guideline for SPECT/CT imaging 1.0. Journal of Nuclear Medicine, 47(7), 1227-1234.
. Schillaci, O., & Filippi, L. (2010). Hybrid SPECT/CT imaging in oncology: clinical use, limitations, and future perspectives. Contrast Media & Molecular Imaging, 5(6), 258-266.
. Dilsizian, V., Bacharach, S. L., Beanlands, R. S., Bergmann, S. R., Delbeke, D., Gropler, R. J., ... & Travin, M. I. (2009). ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. Journal of Nuclear Cardiology, 16(4), 651-681.
. Erdi, Y. E., Humm, J. L., Imbriaco, M., Yeung, H., & Larson, S. M. (1997). Quantitative bone metastases analysis based on image segmentation. Journal of Nuclear Medicine, 38(9), 1401-1406.
. Blinder, S., Chang, Z., Stodilka, R. Z., Barney, J., Gagnon, K., & Celler, A. (2005). Evaluation of CZT detectors for clinical SPECT applications. IEEE Transactions on Nuclear Science, 52(5), 1843-1849.
. Celler, A., Hou, X., Chang, Z., Piwowarczuk, K., Barney, J., Gagnon, K., & Blinder, S. (2005). Evaluation of rapid SPECT imaging with a multi-pinhole collimator. IEEE Transactions on Nuclear Science, 52(5), 1259-1264.
. Rahmim, A., & Zaidi, H. (2008). PET versus SPECT: strengths, limitations and challenges. Nuclear Medicine Communications, 29(3), 193-207.
. Delso, G., Fürst, S., Jakoby, B., Ladebeck, R., Ganter, C., Nekolla, S. G., & Schwaiger, M. (2011). Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. Journal of Nuclear Medicine, 52(12), 1914-1922.
. Cook, G. J., & Azad, G. K. (2021). Theranostics: a transformative concept in the management of cancer. Clinical Oncology, 33(8), 466-475
. Thomason, C. M., & Bizzi, A. (2020). Imaging in molecular medicine: current practices and future prospects. Clinical and Translational Imaging, 8(4), 277-289.
. Pichler, B. J., Kolb, A., Nägele, T., & Schlemmer, H. P. (2010). PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. Journal of Nuclear Medicine, 51(3), 333-336.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 American Scientific Research Journal for Engineering, Technology, and Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who submit papers with this journal agree to the following terms.