Electronic and Superconductivity Properties of FeSe Superconductor

Sumal Chandra

Abstract


We have investigated theoretically electronic and superconducting properties of FeSe superconductor. The calculated specific heat effective mass is found m*/mband = 2.15. This result is comparable with angle resolved photoemission spectroscopy data with the other Fe-pnictdes compound. The electron-phonon coupling constant is found l = 0.7 for this superconductor. This result is also comparable with the results of linearized augmented plane wave method.  It is observed that the FeSesystem is more correlated system compared to the Fe element.


Keywords


FeSe Superconductors; Specific Heat; Effective Mass; Electron-phonon coupling constant.

Full Text:

PDF

References


Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono (2008) Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K, J. Amer. Chem. Soc. 130, 3296.

F. C. Hsu, J. Y. Luo, K.W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y.C. Lee, Y. L. Huang, Y.Y. Chu, D.C. Yan, and M. K. Wu (2008) Superconductivity in the PbO-type structure α-FeSe, Proc. Natl. Acad. Sci. U.S.A. 38, 14262.

A. Subedi, L. Zhang, D. J. Singh, and M. H. Du (2008) Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity, Phys. Rev. B 78, 134514.

Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano (2009) Substitution Effects on FeSe Superconductor, J. Phys. Soc. Jpn. 78, 074712.

K. W. Yeh, H. C. Hsu, T. W. Huang, P. M. Wu, Y. L. Huang, T. K. Chen, J. Y. Luo, and M. K. Wu (2008) Se and Te Doping Study of the FeSe Superconductors, J. Phys. Soc. Jpn. Suppl. C 77, 19.

Sumal Chandra (2018) Electronic Properties of FeSe1-xTex Superconductors, J. Sci. Res. Phys. Math. Sci. Vol. 5(1) ISSN: 2349-7149.

D. H. Lu, M. Yi, S. -K. Mo, S. A. Erickson, J. Analytis, J, -H. Chu, D. J. Sing, Z. Hussain, T. H. Geballe, I. R. Fisher, and Z.-X. Shen (2008) Electronic structure of the iron-based superconductor LaOFeP, Nature 455, 81.

J. Sànchez- Barriga, J. Fink, V. Boni, I. Di Marco, J. Braun, J. Minàr, A. Varykhalov, O. Rader, V. Bellini, F. Manghi, M.I. Katsnelson, A. I. Lichtenstein, O. Erikson, W. Eberhardt, and H. A. Dürr (2009) Strength of Correlation Effects in the Electronic Structure of Iron, Phys. Rev. Lett. 103, 267203.

C. H. Cheng, C. T. Wei, and P. A. Beck (1960) Low-temperature specific heat of body-centered cubic alloys of 3d transition elements, Phys. Rev. 120, 426.

M. M. Qazilbash, J. J. Hamlin, R. E. Baumbach, L. Zhang, D. J. Sing, M. B. Maple, and D. N. Basov (2009) Electron correlations in the Iron-pnictides, Nature Physics 5, 647.

X. Y. Zhou, T. Yoshida, A. Lanzara, P. V. Bogdanov, S. A. Kellar, K. M.shen, W. L. Yang, F. Ronning, T. Sasagawa, T. Kakeshita, T. Noda, H. Eisaki, S. Uchida, C. T. Lin, F. Zhou, J.W. Xiong, W. X. Ti, Z. X. Zhao, A. Fujimori, Z. Hussain, and Z. –X. Shen (2003) High-temperature superconductors: Universal nodal Fermi velocity, Nature 423, 398.

A. Tamai, A. Y. Ganin, E. Rozbicki, J. Bacsa, W. Meevasana, P. D. C. King, M. Caffio, R. Schaub, S. Margadonna, K. Prassides, M. J. Rosseinsky, and F. Baumberger, (2010) Strong electron correlations in the normal state of the iron based FeSe0.42Te0.58 superconductor observed by angle- resolved photomission spectroscopy, Phys. Rev. Lett. 104, 097002.

V. Ksenofontov, G. Wortmann, A. I. Chumakov, T. Gasi,S. Medvedev, T. M. McQueen, R. J. Cava, and C. Felser (2010) Density of phonon states in superconducting FeSe as a function of temperature and pressure, Phys. Rev. B 81, 184510.

Timur Bazhirov and Marvin L. Cohen (2012) Spin resolved electron phonon coupling in FeSe and KFe2Se2, Phys. Rev. B 86, 134517.

S. Chandra, and A. K. M. A. Islam (2010) Elastic properties of mono- and polycrystalline PbO-type FeSe1-xTex (x=0-1.0): A first principles study, Phycica C 470, 2072

W. Kohn and L. J. Sham (1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 140, 1133-1138.

S. J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C.Payne (2005) First principles methods using CASTEP, Z. Kristallogr. 220 (5-6) 567-570.

O. Jepsen and O. K. Andersen (2000) The Stuttgart TB-LMTO Program (Federal Republic of Germany).

Sumal Chandra, (2013) Construction of tight-binding real space Hamiltonian and its application to correlated electron system, Master’s thesis, University of the Ryukyus, Japan.

J. Kumar, S. Auluck, P. K. Ahluwalia, and V. P. S. Awana (2012) Chalcogen height dependence of magnetism and Fermiology in FeTexSe1−x, Supercond. Sci. Technol. 25, 095002.

C. P. Poole, H. A. Farach, R. J. Creswick, and R. Prozorov, Superconductivity 2nd ed., Elsevier, Netherlands, 2007, p. 12.

J. Hopfield (1969)Angular momentum and transition metal superconductivity, Phys. Rev. 186, 443.

G. Gaspari and B. Gyorffy (1972) Electron-Phonon interactions, d Resonances, and Superconductivity in transition metals, Phys. Rev. Lett. 28, 801.

W. McMillan (1968) Transition temperature and strong-couple superconductor, Phys. Rev. 167, 331.

O. L. Anderson (1963) A simplified method for calculating the Debye temperature from elastic constant, J. Phys. Chem. Solids 24, 909.

K. H. Bennemann and J. W. Garland (1972) Theory for superconductivity in d band metal, AIP Conf. Proc. 4, 103.

A. P. Koufos, D. A. Papaconstantopoulos, and M. J. Mehl (2014) First-principles study of the electronic structure of iron-selenium: Implications for electron-phonon superconductivity Phys. Rev. B 89, 035150.

L. Boeri, O. V. Dolgov, and A. A. Golubov (2008) Is LaFeAsO1-xFx an electron-phonon Superconductor?, Phys. Rev. Lett.101, 026403.

I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du (2008) Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx , Phys. Rev. Lett. 101, 057003.


Refbacks

  • There are currently no refbacks.


 
 
  
 

 

  


About ASRJETS | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

ASRJETS is published by (GSSRR).