Optimal Path Planning Obstacle Avoidance of Robot Manipulator System using Bézier Curve

Arif A. AL-Qassar, Ali N. Abdulnabi


One of the problem that faced by engineers in most automated factories that require the need to move things from one place to another in an automated space with obstacles on its way the shortest route and the least time it takes to reach the goal. This paper presents an optimal path planning of 5DOF Lab-Volt 5250 robot manipulator joints and gripper to move from the given start point to the desired goal point without any collision with the obstacles whose boundaries are enveloped by a spherical shape, the size and the height of the obstacle is taken into account. The path planning approach presented is suggested in the robot joint space by using Bézier curve technique. The particle swarm optimization PSO method is used to get the optimal path with the shortest distance and the least time to move the end-effector from the initial point to the final point without hitting any obstacles which exist in the robot environment. This work is not  limited to theoretical studies or simulations, but several experiments cases were tested in different situations in a static environment known to test the robot's arm's ability to reach the desired target without hitting any obstacles with the shortest distance  and least time.


Path Planning; obstacle avoidance; Bézier curve; particle swarm optimization.

Full Text:



  • There are currently no refbacks.




About ASRJETS | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

ASRJETS is published by (GSSRR).