HPM Approximations for Trajectories: From a Golf Ball Path to Mercury’s Orbit

Authors

  • U. Filobello-Nino Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • V.M. Jimenez-Fernandez Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • Jimenez-Fernandez Jimenez-Fernandez Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • B.E. Palma-Grayeb Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • D. Pereyra-Diaz Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • J.E. Pretelin Canela Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • P.S. Luna-Lozano Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • J. Cervantes-Perez Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • C.E. Sampieri-Gonzalez Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • L. Cuellar-Hernández Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • C. Hoyos-Reyes Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • S.F. Hernandez-Machuca Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • J.M. Mendez-Perez Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • A.D. Contreras-Hernandez Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • O. Alvarez-Gasca Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • F.J. Gonzalez-Martinez Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • J.L. Rocha-Fernandez Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • J.L. Vazquez-Aguirre Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • L.J.Varela Lara Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.
  • R.A. Callejas-Molina Instituto Tecnológico de Celaya, Celaya, Guanajuato, Veracruz, México.
  • H. Vazquez-Leal Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.

Keywords:

Nonlinear differential equations, Homotopy, perturbation method, Resummation method.

Abstract

In this work, we propose the approximated analytical solutions for two highly nonlinear problems using the homotopy perturbation method (HPM). We obtained approximations for a golf ball trajectory model and a Mercury orbit’s model. In addition, to enlarge the domain of convergence of the first case study, we apply the Laplace-Padé resummation method to the HPM series solution. For both case studies, we were able to obtain approximations in good agreement with numerical methods, depicting the basic nature of the trajectories of the phenomena.

References

[1] Ahmet Yildirim and Hüseyin Koçak. Homotopy perturbation method for solving the space-time fractional advection-dispersion equation. Advances in Water Resources, 32(12):1711–1716, 2009. DOI:10.1016/j.advwatres.2009.09.003
[2] D. Bahuguna, A. Ujlayan, and D.N. Pandey. A comparative study of numerical methods for solving an integro-differential equation. Computers and Mathematics with Applications, 57(9):1485 – 1493, 2009. DOI:10.1016/j.camwa.2008.10.097
[3] Abd Elhalim Ebaid. A reliable aftertreatment for improving the differential transformation method and its application to nonlinear oscillators with fractional nonlinearities. Communications in Nonlinear Science and Numerical Simulation, 16(1):528 – 536, 2011. DOI:10.1016/j.cnsns.2010.03.012
[4] W.H. Enright, K.R. Jackson, S.P. abd Norsett, and P.G. Thomsen. Interpolants for runge-kutta formulas. ACM TOMS, 12:193–218, 1986. DOI:10.1145/7921.7923
[5] Naeem Faraz and Yasir Khan. Analytical solution of electrically conducted rotating flow of a second grade fluid over a shrinking surface. Ain Shams Engineering Journal, 2(3-4):221 – 226, 2011. DOI:10.1016/j.asej.2011.10.001
[6] E. Fehlberg. Klassische runge-kutta-formeln vierter und niedrigerer ordnung mit schrittweiten-kontrolle und ihre anwendung auf waermeleitungsprobleme. Computing, 6:61–71, 1970. DOI:10.1007/BF02241732
[7] Hector Vazquez-Leal. Generalized homotopy method for solving nonlinear differential equations. Computational and Applied Mathematics, 33(1): 275-288, 2014. DOI:10.1007/s40314-013-0060-4
[8] Ji-Huan He. Variational iteration method-some recent results and new interpretations. Journal of Computational and Applied Mathematics, 207(1):3 – 17, 2007. DOI:10.1016/j.cam.2006.07.009
[9] Ji-Huan He and Xu-Hong Wu. Variational iteration method: New development and applications. Computers and Mathematics with Applications, 54(7-8):881 – 894, 2007. DOI:10.1016/j.camwa.2006.12.083
[10] Ji-Huan He. Notes on the optimal variational iteration method. Applied Mathematics Letters, 25(10):1579 – 1581, 2012. DOI:10.1016/j.aml.2012.01.004
[11] Y.C. Jiao, Y. Yamamoto, C. Dang, and Y. Hao. An aftertreatment technique for improving the accuracy of adomian’s decomposition method. Computers and Mathematics with Applications, 43(6-7):783–798, 2002.
[12] Yasir Khan, Qingbiao Wu, Naeem Faraz, A. Yildirim, and M. Madani. A new fractional analytical approach via a modified riemann-liouville derivative. Applied Mathematics Letters, 2011.
[13] Yasir Khan and Naeem Faraz. Application of modified laplace decomposition method for solving boundary layer equation. Journal of King Saud University - Science, 23(1):115 – 119, 2011.
[14] Yasir Khan, Qingbiao Wu, Naeem Faraz, and Ahmet Yildirim. The effects of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet. Computers and Mathematics with Applications, 61(11):3391 – 3399, 2011.
[15] H. Koçak, A. Yildirim, D.H. Zhang, and S.T. Mohyud-Din. The comparative boubaker polynomials expansion scheme (bpes) and homotopy perturbation method (hpm) for solving a standard nonlinear second-order boundary value problem. Mathematical and Computer Modelling, 54(1-2):417 – 422, 2011.
[16] J.D. Lambert. Numerical methods for ordinary differential systems: The initial value problem. Chichester-UK: John Wiley and sons, 1991.
[17] Ahmet Gökdo?an, Mehmet Merdan, and Ahmet Yildirim. The modified algorithm for the differential transform method to solution of genesio systems. Communications in Nonlinear Science and Numerical Simulation, 17(1):45 – 51, 2012. DOI:10.1016/j.cnsns.2011.03.039
[18] Shaher Momani and Vedat Suat Ertürkb. Solutions of non-linear oscillators by the modified differential transform method. Computers and Mathematics with Applications, 55(4):833 – 842, 2008.
[19] Shaher Momani, G.H. Erjaee, and M.H. Alnasr. The modified homotopy perturbation method for solving strongly nonlinear oscillators. Computers and Mathematics with Applications, 58(11-12):2209 – 2220, 2009.
[20] Richard H. Enns. It’s a Nonlinear World, pages 181–183. Springer, 2010.
[21] N.H. Sweilam and M.M. Khader. Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method. Computers and Mathematics with Applications, 58(11-12):2134 – 2141, 2009.
[22] Pa-Yee Tsai and Cha’o-Kuang Chen. An approximate analytic solution of the nonlinear riccati differential equation. Journal of the Franklin Institute, 347(10):1850 – 1862, 2010.
[23] Yong-Gang Wang, Wen-Hui Lin, and Ning Liu. A homotopy perturbation-based method for large deflection of a cantilever beam under a terminal follower force. International Journal for Computational Methods in Engineering Science and Mechanic, 13:197–201, 2012.
[24] U. Filobello-Nino, H. Vazquez-Leal, R. Castaneda-Sheissa, A. Yildirim, L. Hernandez-Martinez, D. Pereyra-Diaz, A. Perez-Sesma, and C. Hoyos-Reyes. An approximate solution of blasius equation by using hpm method. Asian Journal of Mathematics and Statistics, 5:50–59, 2012.
[25] U. Filobello-Nino, H. Vazquez-Leal, Y. Khan, R. Castaneda-Sheissa, A. Yildirim, L. Hernandez-Martinez, J. Sanchez-Orea, R. Castaneda-Sheissa, and F. Rabago Bernal. Hpm applied to solve nonlinear circuits: a study case. Appl. Math. Sci., 6(85-88):4331–4344, 2012.
[26] H. Vazquez-Leal, R. Castaneda-Sheissa, U. Filobello-Nino, A. Sarmiento-Reyes, and J. Sanchez-Orea. High accurate simple approximation of normal distribution related integrals. Mathematical Problems in Engineering, 2012:22 pages, 2012.
[27] Hector Vazquez-Leal, Uriel Filobello-Nino, Roberto Castaneda-Sheissa, Luis Hernandez-Martinez, and Arturo Sarmiento-Reyes. Modified hpms inspired by homotopy continuation methods. Mathematical Problems in Engineering, 2012:19 pages, 2012.
[28] M. Merdan, A. Gökdo an, and A. Yildirim. On the numerical solution of the model for hiv infection of cd4 t cells. Computers and Mathematics with Applications, 62:118 – 123, 2011.
[29] H. Vazquez-Leal, A. Sarmiento-Reyes, Y. Khan, U. Filobello-Nino, and A. Diaz-Sanchez. Rational biparameter homotopy perturbation method and laplace-padé coupled version. Journal of Applied Mathematics, pages 1–21, 2012. doi:10.1155/2012/923975.
[30] Hector Vazquez-Leal. Rational homotopy perturbation method. Journal of Applied Mathematics, pages 1–14, 2012. doi:10.1155/2012/490342.
[31] H. Vazquez-Leal, Guillermo Fernandez-Anaya Y. Khan, A. Herrera-May, A. Sarmiento-Reyes, U. Filobello-Nino, V.M. Jimenez-Fernandez, and D. Pereyra-Diaz. A general solution for troesch’s problem. Mathematical Problems in Engineering, pages 1–14, 2012. doi:10.1155/2012/208375.
[32] Yasir Khan, Hector Vazquez-Leal, and Q. Wu. An efficient iterated method for mathematical biology model. Neural Computing and Applications, pages 1–6, 2012.
[33] Yasir Khan, Hector Vazquez-Leal, and Luis Hernandez-Martinez. Removal of noise oscillation term appearing in the nonlinear equation solution. Journal of Applied Mathematics, pages 1–9, 2012. doi:10.1155/2012/387365.

Downloads

Published

2018-10-04

How to Cite

Filobello-Nino, U., Jimenez-Fernandez, V., Jimenez-Fernandez, J.-F., Palma-Grayeb, B., Pereyra-Diaz, D., Canela, J. P., Luna-Lozano, P., Cervantes-Perez, J., Sampieri-Gonzalez, C., Cuellar-Hernández, L., Hoyos-Reyes, C., Hernandez-Machuca, S., Mendez-Perez, J., Contreras-Hernandez, A., Alvarez-Gasca, O., Gonzalez-Martinez, F., Rocha-Fernandez, J., Vazquez-Aguirre, J., Lara, L., Callejas-Molina, R., & Vazquez-Leal, H. (2018). HPM Approximations for Trajectories: From a Golf Ball Path to Mercury’s Orbit. American Scientific Research Journal for Engineering, Technology, and Sciences, 47(1), 103–115. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/3828

Issue

Section

Articles