Identification of Durum Wheat Salt Tolerance Sources in Elite Tunisian Varieties and a Targeted FIGS Subset from ICARDA Gene Bank: Non-Destructive and Easy Way

Authors

  • Ramzi Chaabane Laboratory of agricultural applied Biotechnology, INRAT - National Agricultural Research Institute of Tunisia, Hédy Karray street 2049 Ariana Tunisia
  • Abdelkader Saidi Laboratory of agricultural applied Biotechnology, INRAT - National Agricultural Research Institute of Tunisia, Hédy Karray street 2049 Ariana Tunisia
  • Houcine Bchini Laboratory of agricultural applied Biotechnology, INRAT - National Agricultural Research Institute of Tunisia, Hédy Karray street 2049 Ariana Tunisia
  • Moufida Sassi Laboratory of agricultural applied Biotechnology, INRAT - National Agricultural Research Institute of Tunisia, Hédy Karray street 2049 Ariana Tunisia
  • Moustapha Rouissi Laboratory of agricultural applied Biotechnology, INRAT - National Agricultural Research Institute of Tunisia, Hédy Karray street 2049 Ariana Tunisia
  • Amani Ben Naceur Laboratory of agricultural applied Biotechnology, INRAT - National Agricultural Research Institute of Tunisia, Hédy Karray street 2049 Ariana Tunisia
  • Sarra Sayouri Laboratory of agricultural applied Biotechnology, INRAT - National Agricultural Research Institute of Tunisia, Hédy Karray street 2049 Ariana Tunisia
  • M’barek Ben Naceur Laboratory of agricultural applied Biotechnology, INRAT - National Agricultural Research Institute of Tunisia, Hédy Karray street 2049 Ariana Tunisia
  • Inagaki Masanori International Center for Agricultural Research in Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Exp. Station INRA-Quich, Hafiane Cherkaoui street. Agdal, Rabat, Morocco
  • Abdallah Bari International Center for Agricultural Research in Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Exp. Station INRA-Quich, Hafiane Cherkaoui street. Agdal, Rabat, Morocco
  • Ahmed Amri International Center for Agricultural Research in Dry Areas (ICARDA), Rabat-Institutes, B.P. 6299, Exp. Station INRA-Quich, Hafiane Cherkaoui street. Agdal, Rabat, Morocco

Keywords:

traits, screening, salinity, durum wheat, landraces, gene bank.

Abstract

The success of durum wheat breeding program for salt tolerance improvement depends on sources of tolerance, the screening method and the selection of target traits. In this study, we used morpho-physiological traits to elucidate the phenotypic and genetic variation in salinity tolerance of a 50 internationally derived durum wheat genotypes. Four Australian lines containing salt tolerance Nax genes from CSIRO (The Commonwealth Scientific and Industrial Research Organisation in Australia); six Tunisian old and new cultivars (Kerim, Khiar, Maali, Mahmoudi, Nasr and Selim) and forty ICARDA’s gene bank landraces selected basing on FIGS Method (Focused Identification of Germplasm Strategy) were evaluated in semi controlled conditions at the INRAT Ariana experimental station. Significant genotypic variation and Pearson's correlations were found among the evaluated traits. The data were converted to salt tolerance indexes (STI) before statistical analysis.

The high positive and significantly correlation of STI of grain yield and those of tillering (r=0.46), mean daily evapotranspiration (r=0.46), shoot dry weight (r=0.74), number of spikes per plant (r=0.74), spike length (r=0.30), thousand grain weight (r=0.36) and the chlorophyll content at 79 day after sowing (r=0.30) indicated that salt stress induces a high reduction in these parameters, leading to the reduction in grain yield. Therefore we can consider these parameters as the most relevant for salinity tolerance screening criterion in durum wheat breeding programs. Among the analysed genotypes the ICARDA’s landrace IG-85714 from Greece showed better performances under salt stress. Among the analysed Tunisian varieties Maali and Nasr exhibited some level of tolerance. Approximately half of the analysed genotypes showed a moderate to high level of salt tolerance. These are the first sources for the salt tolerance in durum wheat identified in the ICARDA gene bank. This demonstrated that FIGS was effective for sampling large ex situ germplasm collections when seeking novel genetic sources of salt tolerance. 

References

[1] Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–81. doi:10.1146/annurev.arplant.59.032607.092911
[2] Shrivastava, P., Kumar, R., 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131. doi:10.1016/j.sjbs.2014.12.001
[3] Jamil, A., Riaz, S., Ashraf, M., Foolad, M.R., 2011. Gene Expression Profiling of Plants under Salt Stress. CRC. Crit. Rev. Plant Sci. 30, 435–458. doi:10.1080/07352689.2011.605739
[4] El-Hendawy, S.E., Hu, Y., Yakout, G.M., Awad, A.M., Hafiz, S.E., Schmidhalter, U., 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur. J. Agron. 22, 243–253. doi:10.1016/j.eja.2004.03.002
[5] Chaabane, R., Bchini, H., Ouji, H., BenSalah, H., Khamassi, K., Khoufi, S., Babay, E., Ben Naceur, M.B., 2011. Behaviour of Tunisian Durum Wheat (Triticum turgidum L.) Varieties under Saline Stress. Pakistan J. Nutr. 10, 539–542.
[6] Chaabane, R., Saidi, A., Rouissi, M., Ben Naceur, E., Mejri, C., Ben Naceur, M., 2014. Avenues for increasing salt tolerance of Tunisian durum wheat cultivars. In : Porceddu E. (ed.), Damania A.B. (ed.), Qualset C.O. (ed.). Proceedings of the International Symposium on Genetics and breeding of durum wheat. Bari : CIHEAM, 2014. p. 371-377. (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 110). International Symposium : Genetics and Breeding of Durum Wheat, 2013/05/27-30, Rome (Italy). http://om.ciheam.org/om/pdf/a110/00007093.pdf
[7] Cheeseman, J.M., 1988. Mechanisms of salinity tolerance in plants. Plant Physiol. 87, 547–50.
[8] Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., Bohnert, H.J., 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463–499. doi:10.1146/annurev.arplant.51.1.463
[9] Munns, R., 2002. Comparative physiology of salt and water stress. Plant. Cell Environ. 25, 239–250.
[10] James, R.A., Von Caemmerer, S., Condon, A.G. (Tony), Zwart, A.B., Munns, R., 2008. Genetic variation in tolerance to the osmotic stress componentof salinity stress in durum wheat. Funct. Plant Biol. 35, 111. doi:10.1071/FP07234
[11] Farouk S, 2011. Osmotic adjustment in wheat flag leaf in relation to flag leaf area and grain yield per plant. J. Stress Physiol. Biochem. Orig. Text J. Stress Physiol. Biochem. 7, 117–138.
[12] Munns, R., James, R.A., Läuchli, A., 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57, 1025–43. doi:10.1093/jxb/erj100
[13] James, R.A., Davenport, R.J., Munns, R., 2006. Physiological Characterization of Two Genes for Na+ Exclusion in Durum Wheat, Nax1 and Nax2. PLANT Physiol. 142, 1537–1547. doi:10.1104/pp.106.086538
[14] Kerepesi, I., Galiba, G., 2000. Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop Sci. 40, 482. doi:10.2135/cropsci2000.402482x
[15] Sairam, R.K., Rao, K.V., Srivastava, G.., 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163, 1037–1046. doi:10.1016/S0168-9452(02)00278-9
[16] Krasensky, J., Jonak, C., 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63, 1593–608. doi:10.1093/jxb/err460
[17] Carillo, P., Grazia, M., Pontecorvo, G., Fuggi, A., Woodrow, P., 2011. Salinity Stress and Salt Tolerance, in: Abiotic Stress in Plants - Mechanisms and Adaptations. InTech. doi:10.5772/22331
[18] Netondo, G.W., Onyango, J.C., Beck, E., 2004. Sorghum and Salinity. Crop Sci. 44, 806. doi:10.2135/cropsci2004.8060
[19] James, R.A., Munns, R., Von Caemmerer, S., Trejo, C., Miller, C., Condon, T.A.G., 2006. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant, Cell Environ. 29, 2185–2197. doi:10.1111/j.1365-3040.2006.01592.x
[20] Rajendran, K., Tester, M., Roy, S.J., 2009. Quantifying the three main components of salinity tolerance in cereals. Plant. Cell Environ. 32, 237–249. doi:10.1111/j.1365-3040.2008.01916.x
[21] Ashraf, M., 2004. Some important physiological selection criteria for salt tolerance in plants. Flora - Morphol. Distrib. Funct. Ecol. Plants 199, 361–376. doi:10.1078/0367-2530-00165
[22] Davenport, R., James, R.A., Zakrisson-Plogander, A., Tester, M., Munns, R., 2005. Control of Sodium Transport in Durum Wheat. PLANT Physiol. 137, 807–818. doi:10.1104/pp.104.057307
[23] Venkateswarlu, B., Shanker, A., 2009. Climate change and agriculture: Adaptation and mitigation stategies 54.
[24] Chaabane, R., Khoufi, S., Khamassi K., Teixeira da Silva, J., Ben Naceur A., Bchini, H., Babay, E., Ouji, H., B., Ben Salah, H., Gharbi, M.S., Ben Naceur, M., 2012. Molecular and Agro-physiological Approaches for Parental Selection before Intercrossing in Salt Tolerance Breeding Programs of Durum Wheat. International Journal of Plant Breeding 6 (2), 100-105. Global Science Books.
[25] De Leon, T.B., Linscombe, S., Gregorio, G., Subudhi, P.K., 2015. Genetic variation in Southern USA rice genotypes for seedling salinity tolerance. Front. Plant Sci. 6, 374. doi:10.3389/fpls.2015.00374
[26] Bari, A., Street, K., Mackay, M., Endresen, D.T.F., De Pauw, E., Amri, A., 2012. Focused identification of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental variables. Genet. Resour. Crop Evol. 59, 1465–1481. doi:10.1007/s10722-011-9775-5
[27] El-Hendawy, S.E., Hu, Y., Schmidhalter, U., 2007. Assessing the Suitability of Various Physiological Traits to Screen Wheat Genotypes for Salt Tolerance. J. Integr. Plant Biol. 49, 1352–1360. doi:10.1111/j.1744-7909.2007.00533.x
[28] El Bouhssini, M., Street, K., Amri, A., Mackay, M., Ogbonnaya, F.C., Omran, A., Abdalla, O., Baum, M., Dabbous, A., Rihawi, F., 2011. Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the Focused Identification of Germplasm Strategy (FIGS). Plant Breed. 130, 96–97. doi:10.1111/j.1439-0523.2010.01814.x
[29] Inagaki, M., Chaabane, R., Bari, A., 2016. Root water-uptake and plant growth in two synthetic hexaploid wheat genotypes grown in saline soil under controlled water-deficit stress. J. Plant Breed. Genet. 3, 49–57.
[30] Ünlükara, A., Kurunç, A., Kesmez, G.D., Yurtseven, E., Suarez, D.L., Nlükara, A., 2010. Effects of salinity on eggplant (Solanum Melongena L.) growth and evapotranspiration 59, 203–214. doi:10.1002/ird.453
[31] Chaabane, R., Saidi, A., Sassi, M., Rouissi, M., Bchini, H., Sayouri, S., Ben Naceur, M., Masanori, I., Amri, A., Bari, A., 2016. Variétés élites tunisiennes de blé dur à cultiver sous conditions de stress salin. Annales de l’INRAT, Numéro Spécial Innovations, 89, 76-79.
[32] Robin, A.H.K., Matthew, C., Uddin, M.J., Bayazid, K.N., 2016. Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. J. Exp. Bot. erw064–. doi:10.1093/jxb/erw064
[33] Meneguzzo, S., Navari-Izzo, F., Izzo, R., 2000. NaCl Effects on Water Relations and Accumulation of Mineral Nutrients in Shoots, Roots and Cell Sap of Wheat Seedlings. J. Plant Physiol. 156, 711–716. doi:10.1016/S0176-1617(00)80236-9
[34] Natarajan, S.K., Ganapathy, M., Nagarajan, R., Somasundaram, S., 2005. Screening of Rice Accessions for Yield and Yield Attributes Contributing to Salinity Tolerance in Coastal Saline Soils of Tamil Nadu, South India. Asian J. Plant Sci. 4, 435–437. doi:10.3923/ajps.2005.435.437
[35] Katerji, N., van Hoorn, J.., Hamdy, A., Mastrorilli, M., 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag. 62, 37–66. doi:10.1016/S0378-3774(03)00005-2
[36] Ulfat, M., Athar, H.-U.-R., Ashraf, M., Akram, N.A., Jamil, A., 2007. Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica Napus L.). Pak. J. Bot 39, 1593–1608.
[37] El-Hendawy, S.E., Ruan, Y., Hu, Y., Schmidhalter, U., 2009. A Comparison of Screening Criteria for Salt Tolerance in Wheat under Field and Controlled Environmental Conditions. J. Agron. Crop Sci. 195, 356–367. doi:10.1111/j.1439-037X.2009.00372.x
[38] Siddiqi, H.E., Ashraf, M., Hussain, M., Jamil, A., 2009. Assessment of inter-cultivar variation for salt tolerance in safflower (Carthamus Tinctorius L.) using gas exchange characteristics as selection criteria. Pak. J. Bot 41, 2251–2259.
[39] El-Hendawy, S.E., Hu, Y., Sakagami, J.I., Schmidhalter, U., 2012. Screening Egyptian Wheat Genotypes for Salt Tolerance at Early Growth Stages. Int. J. Plant Prod. 5, 283–298.
[40] Turki, N., Shehzad, T., Harrabi, M., Tarchi, M, Okuno, K., 2014. Variation in response to salt stress at seedling and maturity stages among durum wheat varieties. Journal of Arid Land Studies. 24-1, 261–264.
[41] Oyiga, B.C., Sharma, R.C., Shen, J., Baum, M., Ogbonnaya, F.C., Léon, J., Ballvora, A., 2016. Identification and Characterization of Salt Tolerance of Wheat Germplasm Using a Multivariable Screening Approach. J. Agron. Crop Sci. doi:10.1111/jac.12178
[42] Haq, T.U., Akhtar, J., Nawaz, S., Ahmad, R., 2009. Morpho-physiological response of rice (Oryza Sativa L.) varieties to salinity stress. Pak. J. Bot 41, 2943–2956.
[43] Ashraf, M., Harris, P.J.C., 2013. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190. doi:10.1007/s11099-013-0021-6
[44] Raza, S.H., Athar, H.-U.-R., Ashraf, A.M., 2006. Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pak. J. Bot 38, 241–251.
[45] Arfan, M., Athar, H.R., Ashraf, M., 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J. Plant Physiol. 164, 685–94. doi:10.1016/j.jplph.2006.05.010
[46] Kiani-Pouya, A., Rasouli, F., 2014. The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition. Photosynthetica 52, 288–300. doi:10.1007/s11099-014-0033-x
[47] Khazaei, H., Street, K., Bari, A., Mackay, M., Stoddard, F.L., 2013. The FIGS (Focused Identification of Germplasm Strategy) Approach Identifies Traits Related to Drought Adaptation in Vicia faba Genetic Resources. PLoS One 8, e63107. doi:10.1371/journal.pone.0063107
[48] El Bouhssini, M., Street, K., Joubi, A., Ibrahim, Z., Rihawi, F., 2009. Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genet. Resour. Crop Evol. 56, 1065–1069. doi:10.1007/s10722-009-9427-1

Downloads

Published

2017-12-12

How to Cite

Chaabane, R., Saidi, A., Bchini, H., Sassi, M., Rouissi, M., Naceur, A. B., Sayouri, S., Naceur, M. B., Masanori, I., Bari, A., & Amri, A. (2017). Identification of Durum Wheat Salt Tolerance Sources in Elite Tunisian Varieties and a Targeted FIGS Subset from ICARDA Gene Bank: Non-Destructive and Easy Way. American Scientific Research Journal for Engineering, Technology, and Sciences, 38(2), 98–118. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/2527

Issue

Section

Articles