Psychrophilic Microbial Enzymes Implications in Coming Biotechnological Processes

Authors

  • Anam Javed PhD scholar, Department of Zoology, University of the Punjab, Lahore, Pakistan.
  • Javed Iqbal Qazi Professor of Zoology, Department of Zoology, University of the Punjab, Lahore, Pakistan.

Keywords:

Production accelerators, bioremediation, ionic strength, genetic engineering, cold-active enzyme.

Abstract

Psychrophilic microorganisms produce a variety of cold-active enzymes which are used as production accelerators at commercial level to cope increasing demands necessitating low temperature conditions. The psychrophilic enzymes are frequently employed in food processing, textile, detergents, feed stocks, bioremediation, cosmetics, paper and pharmaceutical industries. But being extermophilic in nature, psychrophiles have certain pH, ionic strength and temperature limitation. To overcome such issues, their molecular biology and beneficial genetic engineering approaches are current goals of researchers. In this regard, many successful studies have accomplished importance of cold-active enzymes at industrial level. This review summarizes applications of potential psychrozymes.

References

[1]. S. D’Amico, C. Gerday and G. Feller. Structural determinants of cold adaptation and stability in a large protein. J Biol Chem, vol. 276, pp. 25791-25796, 2001.
[2]. A. L. Mascarelli. Geomicrobiology: Low life. Nature, vol. 459, pp. 770–773, 2009.
[3]. A.L. Giudice, V. Bruni, M. De Domenico and L. Michaud. “Psychrophiles - Cold-Adapted Hydrocarbon-Degrading Microorganisms”, in Handbook of Hydrocarbon and Lipid Microbiology, T. McGenity, Ed., 2010, pp. 1897-1921.
[4]. A. Hodson, A.M. Anesio, M. Tranter, A. Fountain, M. Osborn, J. Priscu, J. Laybourn-Parry and B. Sattler. Glacial ecosystems. Ecol. Monogr., vol. 78, pp. 41-67, 2008.
[5]. S. MacDonell and S. Fitzsimons. The formation and hydrological significance of cryoconite holes. Prog. Phys. Geogr., vol. 32, pp. 595-610, 2008.
[6]. J.A. Baross and R.Y. Morita. “Microbial life at low temperatures: ecological aspects”, in Microbial Life in Extreme Environments. D. J. Kushner, Ed., Academic Press, 1978, pp. 9 -71.
[7]. E. Willerslev, A.J. Hansen and HN. Poinar. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol, vol. 19, pp. 141-147, 2004.
[8]. K.K. Pulicherla, M. Ghosh, P.S. Kumar and K.R.S.S. Rao. Psychrozymes- The Next Generation Industrial Enzymes. J Marine Sci Res Development, vol. 1, pp. 102, 2011.
[9]. P. Buzzini, E. Branda, M. Goretti and B. Turchetti. Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol, vol. 82, pp. 217–241, 2012.
[10]. L.Loperena, V. Soria, H. Varela, S. Lupo, A. Bergalli,M. Guigou, A. Pellegrino, A. Bernardo, A. Calviño, F. Rivas and S. Batista. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World Journal of Microbiology and Biotechnology, vol. 28 (5), pp. 2249-2256, March 2012.
[11]. C. Struvay and G. Feller. Optimization to Low Temperature Activity in Psychrophilic Enzymes. Int. J. Mol. Sci., vol. 13, pp. 11643-11665, 2012.
[12]. R.Y. Morita. Psychrophilic bacteria. Bacteriol Rev, vol. 39, pp. 144-167, 1975.
[13]. R. Cavicchioli, K.S. Siddiqui, D. Andrewss and K.R. Sowers. Low-temperature extremophiles and their applications. Curr Opin Biotechnol, vol. 13, pp. 253–261, 2002.
[14]. J.W., Deming. Psychrophiles and Polar regions. Curr Opin Microbiol, vol. 5, pp. 301-309, 2002.
[15]. R. Margesin, G. Feller, C. Gerday and N. Russell. “Cold-Adapted Microorganisms: Adaptation Strategies and Biotechnological Potential”, in The Encyclopedia of Environmental Microbiology, vol. 2, G. Bitton, Ed., John Wiley & Sons New York. , 2002, pp. 871-885.
[16]. G. Feller and C. Gerday. Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol, vol.1, pp. 200-208, 2003.
[17]. D. Georlette, V. Blaise, T. Collins, S. D’Amico and E. Gratia. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev, vol. 28, pp. 25-42, 2004.
[18]. S. D’Amico, T. Collins, J. C. Marx, G. Feller and C. Gerday. Psychrophilic microorganisms: challenges for life. EMBO Rep., vol. 7, pp. 385–389, 2006.
[19]. M. Turkiewicz, E. Gromek, H. Kalinowska, M. Zielinska. Biosynthesis and properties of an extracellular metalloprotease from the Antarctic marine bacterium Sphingomonas paucimobilis. J Biotechnol, vol. 70, pp. 53-60, 1999.
[20]. J.A. Irwin, G.A. Alfredsson, A.J. Lanzetti, H.M. Gudmundsson and P.C. Engel. Purification and characterization of a serine peptidase from the marine psychrophile strain PA-43. FEMS Microbiol Lett, vol. 201, pp. 285-290, 2001.
[21]. I. Mayordomo, F. Randez-Gil, and J.A., Prieto. Isolation, purification and characterization of a cold-active lipase from Aspergillus nidulans. J Agric Food Chem, vol. 48, pp. 105-109, 2000.
[22]. J.B. Hauksson, O.S. Andresson and B. Asgeirsson. Heat-labile bacterial alkaline phosphatase from a marine Vibrio sp. Enzyme Microb Technol, vol. 27, pp. 66-73, 2000.
[23]. I. Tsigos, K. Velonia, I. Smonou, and S.V. Bourioti. Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE 123. Eur J Biochem, vol. 254, pp. 356-362, 1998.
[24]. A. Svingor, J. Kardos, I. Hajdu, A. Nemeth, P. Zavodszky. A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic and thermophilic IPMDHS. J Biol Chem, vol. 276, pp. 28121-28125, 2001.
[25]. G. Feller, J.P. Pauly, A. Smal, P. O’Carra and C. Gerday. The lactate dehydrogenase of the icefish heart: biochemical adaptations to hypoxia tolerance. Biochim Biophys Acta, vol. 1079, pp. 343-347, 1991.
[26]. T. Oikawa, K. Yamanaka, T. Kazuoka, N. Kanzawa and K. Soda. Psychrophilic valine dehydrogenase of the Antarctic psychrophile, Cytophaga sp. KUC-1. Purification, molecular characterization and expression. Eur J Biochem, vol. 268, pp. 4375-4383, 2001.
[27]. J.M. Coombos and J.E. Brenchley. Biochemical and phylogenetic analyses of a cold-active ?-galactosidase from the lactic acid bacterium Carnobacterium piscicola BA. Appl Environ Microbiol, vol. 65, pp. 5443-5450, 1999.
[28]. S. Uma, R.S. Jadhav, G. Seshu-Kumar, S. Shivaji, and M.K. Ray. An RNA polymerase with transcriptional activity at 0°C from the Antarctic bacterium Pseudomonas syringae. FEBS Lett, vol. 453, pp. 313-317, 1999.
[29]. C. Schleper, R.V. Swanson, E.J. Mathur, and E.F. Delong. Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol, vol. 179, pp. 7803-7811, 1997.
[30]. D. Georlette, Z.O. Jonsson, F.V. Petegem, J.P. Chessa, J.V. Beeumen, U. Hubscher and C. Gerday. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insight into the adaptation of proteins to low temperature. Eur J Biochem, vol. 267, pp. 3502-3512, 2000.
[31]. O. Lanes, P.H. Guddal, D.R. Gjellesvik and N.P. Willassen. Purification and characterization of a cold-adapted uracil-DNA glycosylase from Atlantic cod (Gadus morhua). Comp Biochem Physiol B, vol. 127, pp. 399-410, 2000.
[32]. M. Kawalec, P. Borsuk, S. Piechula and P.P. Stepien. A novel restriction endonuclease UnbI, a neoschizomer of Sau96I from an unidentified psychrofilic bacterium from Antarctica is inhibited by phosphate ions. Acta Biochim Pol, vol. 44, pp. 849-852, 1997.
[33]. M. Alvarez, J.P. Zeelen, V. Mainfroid, F. Rentier-Delrue, J.A. Martial, L. Wyns, R.K. Wierenga and D. Maes. Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. J Biol Chem, vol. 273, pp. 2199-2206, 1999.
[34]. T. Lonheinne, J. Zoidakis, C.E. Vorgias, G. Feller, C. Gerday and V. Bouriotis. Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol., vol. 310, pp. 291-297, 2001.
[35]. T. Lonhienne, E. Baise, G. Feller, V. Bouriotis and C. Gerday. Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases. Biochim Biophys Acta, vol. 1545, pp. 349-356, 2001.
[36]. A.H. Iyo and C.W. Forsberg. A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Appl Environ Microbiol, vol. 65, pp. 995-998, 1999.
[37]. T. Takasawa, K. Sagisaka, K. Yagi, K. Uchiyama, A. Aoki, K. Takaoka, K. Yamamato. Polygalacturonase isolated from the culture of the psychrophilic fungus Sclerotinia borealis. Can J Microbiol, vol. 43, pp. 417-424, 1997.
[38]. L.V. Truong, H. Tuyen, E. Helmke, L.T. Binh and T. Schweder. Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles, vol. 5, pp. 35-44, 2001.
[39]. I. Watanabe, Y. Satoh, K. Enomoto, S. Seki and K. Sakashita. Optimal conditions for cultivation of Rhodococcus sp. N-774 and for conversion of acrylonitrile to acrylamide by resting cells. Agric Biol Chem, vol. 51, pp 3201-3206, 1987.
[40]. T. Kimura and K. Horikoshi. Characterization of Pullalan-hydrolysing enzyme from an alkalopsychrotrophic Micrococcus sp. Appl Microbiol Biotechnol, vol. 34, pp. 52-56, 1990.
[41]. I. Petrescu, J.L. Brasseur, J.P. Chessa, P. Ntarima, M. Claeyssens, B. Devreese, G. Marino and C. Gerday. Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles, vol. 4, pp. 137-144, 2000.
[42]. K. Yokoigawa, Y. Okubo, H. Kawai, N. Esaki and K. Soda. Structure and function of Psychrophilic alanine racemase. J Mol Catal B Enzym, vol. 12, pp. 27-35, 2001.
[43]. G. Feller, F. Payan, F. Theys, M. Qian, R. Haser and C. Gerday. Stability and structural analysis of ?-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Eur J Biochem, vol. 222, pp. 441-447, 1994.
[44]. R. Demot and H. Verachtert. Purification and characterization of extracellular ?-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. Eur J Biochem, vol. 164, pp. 643-645, 1987.
[45]. G. Feller, Z. Zekhnini, J. Lamotte-Brasseur and C. Gerday. Enzymes from cold-adapted microorganisms: the class C ?-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem, vol. 244, pp. 186-191, 1997.
[46]. M. Bentahir, G. Feller, M. Aittaleb, J. Lamotte-Brasseur, T. Himri, J.P. Chessa and C. Gerday. Structural, kinetic and calorimetric characterization of the cold-active phosphoglycerate kinase from the Antarctic Pseudomonas sp. TAC II 18. J Biol Chem, vol. 275, pp. 11147-11153, 2000.
[47]. I. Yumoto, H. Iwata, T. Sawabe, K. Ueno, N. Ichise, H. Matsuyama, H. Okuyama and K. Kawasaki. Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. that exhibits high catalase activity. Appl Environ Microbiol, vol. 65, pp. 67-72, 1999.
[48]. Y. Xu, Y. Zhang, Z. Liang, M.V. de-Casteele, C. Legrain, and N. Glansdorff. Aspartate carbamoyltransferase from a psychrophilic deep-sea bacterium, Vibrio strain 2693: properties of the enzyme, genetic organization and synthesis in Escherichia coli. Microbiology, vol. 144, pp. 1435-1441, 1998.
[49]. I.W. Nilsen, K. Overbo, E. Sandsdalen, E. Sandaker, K. Sletten, B. Myrnes. Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antibacterial activity. FEBS Lett, vol. 464, pp. 153-158, 1999.
[50]. S. Ohgiya, T. Hoshino, H. Okuyama, S. Tanaka and K. Ishizaki. “Biotechnology of enzymes from cold-adapted microorganisms”, in Biotechnological Applications of Cold-Adapted Organisms. R. Margesin and F. Schinner, Ed., Heidelberg: Springer-Verlag, 1999, pp. 17-34.
[51]. S. Watanabe, Y. Takada and N. Fukunaga. Purification and characterization of a cold-adapted isocitrate lyase and a malate synthase from Colwellia maris, a psychrophilic bacterium. Biosci Biotechnol Biochem, vol. 65, pp. 1095-1103, 2001.
[52]. H. Okuyama, S. Ohgiya, T. Hoshino, S. Tanaka and K. Ishizaki. “Cold-adapted microorganisms for use in food biotechnology”, in Biotechnological Applications of Cold-Adapted Organisms. R. Margesin and F. Schinner, Eds., Berlin, 1998, pp. 101-117.
[53]. A. Hoyoux, I. Jennes, P. Dubois, S. Genicot, F. Dubail, J.M. Francois, E. Baise, G. Feller and C. Gerday. Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol., vol. 67, pp. 1529–1535, 2001.
[54]. E. S. Nam, Y. H. Kim, K. H. Shon and J. K. Ahn. Isolation and characterization of a psychrophilic bacterium producing cold active lactose hydrolyzing enzyme from soil of Mt. Himalaya in Nepal. African Journal of Microbiology Research, vol. 5(16), pp. 2198-2206, 2011.
[55]. B.G. Sproessler. “Milling and baking”, in Enzymes in Food Processing, T. Nagodawithana and G. Reed, Eds., Academic Press, 1993, pp. 293–320.
[56]. T. Collins, M.A. Meuwis, I. Stals, M. Claeyssens, G. Feller and C. Gerday. A novel family 8 xylanase, functional and physicochemical characterization. J. Biol. Chem., vol. 277, pp. 35133–35139, 2002.
[57]. T. Collins, M.A. Meuwis, C. Gerday and G. Feller. Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol., vol. 328, pp. 419–428, 2003.
[58]. V.F. Petegem, T. Collins, Meuwis, M.A. C. Gerday, G. Feller, J V. Beeumen. The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investigation of the active site. J. Biol. Chem., vol. 278, pp. 7531–7539, 2003.
[59]. T. Collins, D. de Vos, A. Hoyoux, S.N. Savvides, C. Gerday, J. Van Beeumen and G. Feller. Study of the active site residues of a glycoside hydrolase family 8 xylanase. J. Mol. Biol., vol. 354, pp. 425–435, 2005.
[60]. D. De Vos, T. Collins, W. Nerinckx, S.N. Savvides, M. Claeyssens, C. Gerday, G. Feller and J.V. Beeumen. Oligosaccharide binding in family 8 glycosidases: Crystal structures of active-site mutants of the beta-1, 4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product. Biochemistry, vol. 45, pp. 4797–4807, 2006.
[61]. C. Gerday, M. Aittaleb, M. Bentahir, J.P. Chessa, P. Claverie, T. Collins, S. D’Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M. A. Meuwis and G. Feller. Cold-adapted enzymes: from fundamentals to biotechnology, TIBTECH MARCH, vol. 18, pp. 103-107, 2000.
[62]. S. Davail, G. Feller, E. Narinx and C. Gerday. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA41. J. Biol. Chem., vol. 269, pp. 17448–17453, 1994.
[63]. E. Narinx, E. Baise and C. Gerday. Subtilisin from psychrophilic Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng., vol. 11, pp. 1271–1279, 1997.
[64]. C.D. Santi, P. Tedesco, L. Ambrosino, B. Altermark, N.P. Willassen and D. de Pascale. A New Alkaliphilic Cold-Active Esterase from the Psychrophilic Marine Bacterium Rhodococcus sp.: Functional and Structural Studies and Biotechnological Potential. Appl Biochem Biotechnol, vol. 172, pp. 3054–3068, 2014.
[65]. Q.K. Beg, M. Kapoor, L. Mahajan and G.S. Hoondal. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol., vol. 56, pp. 326–338, 2001.
[66]. L. Viikari. Xylanases in bleaching: from an idea to the industry. FEMS Microbiol. Rev., vol. 13, pp. 335–350, 1994.
[67]. J.R. Mielenz. Ethanol production from biomass: technology and commercialization status. Curr. Opin. Microbiol., vol. 4, pp. 324–329, 2001.
[68]. B.C. Saha. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol., vol. 30, pp. 279–291, 2003.
[69]. K.E.L. Eriksson. Biotechnology in the pulp and paper industry. Wood Science and Technology, 24 (1): 79-101, 1990.
[70]. H. R. Novak, C. Sayer, J. Panning and J.A. Littlechild. Characterisation of an L-Haloacid Dehalogenase from the Marine Psychrophile Psychromonas ingrahamii with Potential Industrial Application. Mar Biotechnol, vol. 15, pp. 695–705, 2013.
[71]. A. Trincone. Marine Biocatalysts: Enzymatic Features and Applications. Marine Drugs, vol. 9, pp. 478–499, 2011.
[72]. J.A. Field, F.J.M. Verhagen and E.D. Jong. Natural organohalogen production by Basidiomycetes. Trends Biotechnol, vol. 13, pp. 451–456, 1995.
[73]. C. Valverde, A. Orozco, A. Becerra, M.C. Jeziorszi, P. Villalobos, J.C. Solis. Halometabolites and cellular dehalogenase systems: an evolutionary perspective. Int Rev Cytol, vol. 234, pp. 143–199, 2004.
[74]. K. Kurata, K. Taniguchi, Y. Agatsuma and M. Suzuki. Diterpenoid feeding-deterrents from Laurencia saitoi. Phytochemistry, vol. 47, pp. 363–369, 1998.
[75]. M.T. Cabrita, C. Vale and A.P. Rauter. Halogenated compounds from marine algae. Marine Drugs, vol. 8, pp. 2301–2317, 2010.
[76]. I. Tomova, I. Lazarkevich, A. Tomova, M. Kambourova and E.V. Tonkova. Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria. International Journal of Speleology, vol. 42 (1), pp. 65-76, 2013.
[77]. K.N. Timmis and D.H. Pieper. Bacteria designed for bioremediation. Trends Biotechnol., vol. 17, pp. 201–204, 1999.
[78]. J. S. Bowman and J. W. Deming. Alkane hydroxylase genes in psychrophile genomes and the potential for cold active catalysis. BMC Genomics, vol. 15, pp. 1120, 2014.
[79]. R. Margesin and F. Schinner. “Biotechnological Applications of Cold-adapted Organisms”, in Springer-Verlag: Berlin/Heidelberg, Germany, 1999.
[80]. R. Margesin and F. Schinner. Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Appl. Environ. Microbiol., vol. 63, pp. 2660–2664, 1997.
[81]. R. Margesin and F. Schinner. Low-temperature bioremediation of a waste water contaminated with anionic surfactant and fuel oil. Appl. Microbiol. Biotechnol., vol. 49, pp. 482–486, 1998.
[82]. R. Margesin. Alpine microorganisms: useful tools for low-temperature bioremediation. J Microbiol, vol. 45, pp. 281–285, 2007.
[83]. R. Margesin and G. Feller. Biotechnological applications of psychrophiles. Environ Technol, vol. 31, pp. 835–844, 2010.
[84]. R. Margesin, S. Gander, G. Zacke, A.M. Gounot, and F. Schinner. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles, vol. 7, pp. 451–458, 2003.
[85]. P. Bergauer, P.A. Fonteyne, N. Nolard, F. Schinner and R. Margesin. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Chemosphere, vol. 59, pp. 909–918, 2005.
[86]. I. Krallish, S. Gonta, L. Savenkova, P. Bergauer and R. Margesin. Phenol degradation by immobilized cold-adapted yeast strains of Cryptococcus terreus and Rhodotorula creatinivora. Extremophiles, vol. 10, pp. 441–449, 2006.
[87]. N.J. Russell. Molecular adaptations in psychrophilic bacteria: Potential for biotechnological applications. Adv. Biochem. Eng. Biotechnol., vol. 61, pp. 1–21, 1998.
[88]. R. Margesin and F. Schinner. “Biodegradation of organic pollutants at low temperatures”, in Biotechnological Applications of Cold adapted Organisms, R. Margesin and F. Schinner, Eds Springer, 1999, pp. 271–289.
[89]. D. Allen, A.L. Huston, L.E. Weels and J.W. Deming. “Biotechnological use of psychrophiles”, in Encyclopedia of Environmental Microbiology G. Bitton, Ed., John Wiley and Sons: New York, NY, USA, 2002, pp. 1–17.
[90]. J.C. Marx, T. Collins, S. D’Amico, G. Feller and C. Gerday. Cold-adapted enzymes from marine Antarctic microorganisms. Mar. Biotechnol., vol. 9, pp. 293–304, 2007.
[91]. R. Margesin, F. Schinner, J.C. Marx and C. “Gerday. Psychrophiles, from Biodiversity to Biotechnology”, Springer-Verlag: Berlin/Heidelberg, Germany, 2008.
[92]. R. Cavicchioli, T. Charlton, H. Ertan, M.S. Omar, K.S. Siddiqui and T.J. Williams. Biotechnological uses of enzymes from psychrophiles. Microb. Biotechnol., vol. 4, pp. 449–460, 2011.
[93]. G. Bell, P.J. Halling, B.D. Moore, J. Partridge and D.G. Rees. Biocatalyst behavior in low-water systems. Trends Biotechnol., vol. 13, pp. 468–473, 1995.
[94]. J. Partridge, P.J. Halling and B.D. Moore. Practical route to high activity enzyme preparations for synthesis in organic media. Chem. Commun., vol. , pp. 841–842, 1998. ???
[95]. Lohan, D. and Johnston, S., UNU-IAS Report: Bioprospecting in Antarctica, 2005. Available online: http://www.ias.unu.edu/binaries2/antarctic_bioprospecting.pdf (accessed on 14 September 2014).
[96]. J. Babu, P.W. Ramteke and G. Thomas. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. Adv., vol. 26, pp. 457–470, 2008.
[97]. T. Hamamoto, M. Kaneda, K. Horikoshi and T. Kudo. Characterization of protease from a psychrotroph, Pseudomanas fluorescenes 114. Appl. Environ. Microbiol., vol. 60(10), pp. 3878-3880, 1994.
[98]. V.S. Baghel, R.D. Tripathi, P.W. Ramteke, K. Gopal, S. Dwivedi, R.K. Jain, U.N. Rai and S.N. Singh. Psychrotrophic proteolytic bacteria from cold environment of Gangotri glacier, Western Himalaya, India. Enzyme Microb. Technol., vol. 36, pp. 654–659, 2005.
[99]. A. M. Abdou. Purification and partial characterization of psychrotrophic Serratia marcescens Lipase. J. Dairy Sci., vol. 86, pp. 127– 132, 2003.
[100]. H.K. Lee, M.J. Ahn, S.H. Kwak, W.H. Song and B.C. Jeong. Purification and characterization of cold active lipase from Psychrotrophic Aeromonas sp. LPB 4. J. Microbiol., vol. 41 (1), pp. 22-27, 2003.
[101]. B. Joseph, P.W. Ramteke and P.A. Kumar. Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis. J. Gen. Appl. Microbiol., vol. 52, pp. 315-320, 2006.
[102]. J. Loveland, K. Gutshall, J. Kasmir, P. Prema and J.E. Brenchley. Characterization of psychrotrophic microorganisms producing betagalactosidase activities. Appl. Environ. Microbiol., vol. 60, pp. 12–18, 1994.
[103]. S. Shipkowski and J.E. Brenchley. Characterization of an unusual cold-active beta-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl. Environ. Micro-biol., vol. 71, pp. 4225–4232, 2005.
[104]. M.R. Kuddus, J.M. Arif and P.W. Ramteke. Structural adaptation and biocatalytic prospective of microbial cold-active á-amylase. AFR. J. Microbiol. Res., vol. 6 (2), pp. 206-213, 2012.
[105]. M. Cotârleþ, T. Negoitã, G. Bahrim and P. Stougaard. Cold adapted amylase and protease from new Streptomyces 4 Alga Antarctic strain. Inn. Romanian Food Biotechnol., vol. 5, pp. 23- 30, 2009.
[106]. M.S. Cabeza, F. L. Baca, E.M. Puntes, F. Loto, M.D. Baigorí and I. M. Vilma. Cold-Active Pectinases from Psychrotolerant Microorganisms. Food Technol. Biotechnol., vol. 49 (2), pp. 187–195, 2011.
[107]. A. K. Maharana and P. Ray. Isolation and Screening of Cold Active Extracellular Enzymes Producing Psychrotrophic Bacteria from Soil of Jammu City. Biosciences Biotechnology Research Asia, vol. 10(1), pp. 267-273, 2013.
[108]. J.L. Arpigny and K.E. Jaeger. Bacterial lipolytic enzymes: classification and properties. Biochem J, vol. 343, pp. 177–183, 1999.
[109]. E.Y. Yu, M.A. Kwon, M. Lee, J.Y. Oh, J. Choi, J.Y. Lee, B. K. Song, D. Hahm, and J. K. Song. Isolation and characterization of cold-active family VIII esterases from an arctic soil metagenome. Applied Microbiology and Biotechnology, vol. 90 (2), pp. 573-581, 2011.
[110]. S. Li, X. Yang, S. Yang, M. Zhu and X. Wang. Technology Prospecting on Enzymes: Application, Marketing and Engineering. Comput Struct Biotechnol J., vol. 2 (3), pp. 1-11, 2012.
[111]. H. Kobori, C.W. Sullivan and H. Shizuya. Heat-labile alkaline phosphatase from Antarctic bacteria: Rapid 5' end labeling of nucleic acids. Proc. Natl. Acad. Sci., vol. 81, pp. 6691–6695, 1984.
[112]. M. Rina, C. Pozidis, K. Mavromatis, M. Tzanodaskalaki, M. Kokkinidis and V. Bouriotis. Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. Eur. J. Biochem., vol. 267, pp. 1230–1238, 2000.
[113]. E. Wang, D. Koutsioulis, H.K. Leiros, O.A. Andersen, V. Bouriotis, E. Hough and P. Heikinheimo. Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5. J. Mol. Biol., vol. 366, pp. 1318–1331, 2007.
[114]. D. Koutsioulis, E. Wang, M. Tzanodaskalaki, D. Nikiforaki, A. Deli, G. Feller, P. Heikinheimo and V. Bouriotis. Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Protein Eng. Des. Sel., vol. 21, pp. 319–327, 2008.
[115]. R. Chen, L. Guo and H. Dang. Gene cloning, expression and characterization of a cold-adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18. World J Microbiol Biotechnol, vol. 27, pp. 431–441, 2011.
[116]. I. Leiros, E. Moe, O. Lanes, A.O. Smalas and N.P. Willassen. The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features. Acta Crystallogr. D Biol. Crystallogr., vol. 59, pp. 1357–1365, 2003.
[117]. Z. D. Alvarado-Cuevas, A. M. L. Hidalgo, L. G. Ordonez, E. Oceguera-Contreras, J. T. Ornelas-Salas, and A. D. Leon-Rodrý´guez. Biohydrogen production using psychrophilic bacteria isolated from Antarctica. International journal of hydrogen energy, vol. 30, pp. 1-7, 2014.
[118]. M. Debowski, E. Korzeniewska, Z. Filipkowska, M. Zielifinski and R. Kwiatkowski. Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria. International journal o f hydrogen energy, vol. 39, pp. 1972- 1978, 2014.
[119]. S. Manish, Rangan Banerjee. Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, vol. 33, pp. 279 – 286, 2008.
[120]. I.K. Kapdan and F. Kargi. Biohydrogen production from waste materials. Enzyme Microb Technol, vol. 38, pp. 569-82, 2006.
[121]. F. Kargi, N.S. Eren and S. Ozmihci. Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. Int J Hydrogen Energy, vol. 37, pp. 2260-6, 2012.
[122]. L. Lu, N. Ren, X. Zhao, H. Wang, D. Wu and D. Xing. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ Sci, vol. 4, pp. 1329-36, 2011.
[123]. L. Lu, D. Xing, N. Ren and B.E. Logan. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour Technol, vol. 124, pp. 68-76, 2012.
[124]. L.R. Lynd, M.S. Laser, D. Bransby, B.E. Dale, B. Davison, R. Hamilton, M. Himmel, M. Keller, J.D. McMillan, J. Sheehan and C.E. Wyman. How biotech can transform biofuels. Nature Biotechnology, vol. 26 (2), pp. 169–172, 2008.
[125]. D.I. Massé, L. Masse and F. Croteau. The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresource Technology, vol. 89 (1), pp. 57–62, 2003.
[126]. D.I. Massé, L. Masse, Y. Xia and Y. Gilbert. Potential of low-temperature anaerobic digestion to address current environmental concerns on swine production. Journal of Animal Science, vol. 88 (13), pp. 112–120, 2010.
[127]. L.M. Safley and P.W. Westerman. Low-temperature digestion of dairy and swine manure. Bioresource Technology, vol. 47 (2), pp. 165–171, 1994.
[128]. R.C. Kasana and A. Gulati. Cellulases from psychrophilic microorganisms: A review. Journal of Basic Microbiology, vol. 51 (6), pp 572–579, 2011.
[129]. L. Neves, R. Oliveira and M.M. Alves. Anaerobic co-digestion of coffee waste and sewage sludge. Waste Management, vol. 26 (2), pp. 176–181, 2006.
[130]. Z. Yue, C. Teater, J. MacLellan, Y. Liu and W. Liao. Development of a new bioethanol feedstock – anaerobically digested fiber from confined dairy operations using different digestion configurations. Biomass and Bioenergy, vol. 35 (5), pp. 1946–1953, 2011.
[131]. S. Weiß, M. Tauber, W. Somitsch, R. Meincke, H. Müller, G. Berg, and G.M. Guebitz. Enhancement of biogas production by addition of hemicellulolytic bacteria immobilized on activated zeolite. Water Research, vol. 44 (6), pp. 1970–1980, 2010.
[132]. N.M.C. Saady and D.I. Massé. Psychrophilic anaerobic digestion of lignocellulosic biomass: A characterization study. Bioresource Technology, vol. 142, pp. 663–671, 2013.
[133]. P.L. Wintrode and F.H. Arnold. Temperature adaptation of enzymes: Lessons from laboratory evolution. Adv. Protein Chem., vol. 55, pp. 161–225, 2000.
[134]. K.S. Siddiqui, A. Poljak, and R. Cavicchioli. Improved activity and stability of alkaline phosphatases from psychrophilic and mesophilic organisms by chemically modifying aliphatic or amino groups using tetracarboxy-benzophenone derivatives. Cell. Mol. Biol., vol. 50, pp. 657–667, 2004.
[135]. K.S. Siddiqui and R. Cavicchioli. Improved thermal stability and activity in the cold-adapted lipase B from Candida Antarctica following chemical modification with oxidized polysaccharides. Extremophiles, vol. 9, pp. 471–476, 2005.

Downloads

Published

2016-08-04

How to Cite

Javed, A., & Qazi, J. I. (2016). Psychrophilic Microbial Enzymes Implications in Coming Biotechnological Processes. American Scientific Research Journal for Engineering, Technology, and Sciences, 23(1), 103–120. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/1916

Issue

Section

Articles