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Abstract  

Semantic segmentation problems such as landcover segmentation rely on large amounts of annotated images to 

excel. Without such data for target regions, transfer learning methods are widely used to incorporate knowledge 

from other areas and domains to improve performance. In this study, we analyze the performance of landcover 

segmentation models trained on low-resolution images with insufficient data for the targeted region or zoom 

level. In order to boost performance on target data, we experiment with models trained with unsupervised, semi-

supervised, and supervised transfer learning approaches, including satellite images from public datasets and 

other unlabeled sources. According to experimental results, transfer learning improves segmentation 

performance by 3.4% MIoU (mean intersection over union) in rural regions and 12.9% MIoU in urban regions. 

We observed that transfer learning is more effective when two datasets share a comparable zoom level and are 

labeled with identical rules; otherwise, semi-supervised learning is more effective using unlabeled data. Pseudo 

labeling based unsupervised domain adaptation method improved building detection performance in urban 

cities. In addition, experiments showed that HRNet outperformed building segmentation approaches in multi-

class segmentation. 
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1. Introduction 

Land cover analysis maps provide spatial data on many types of physical surface cover, such as a village, 

forests, croplands, lakes, and roads. Thanks to the information obtained from land cover maps, many necessary 

applications, such as city and regional planning, agricultural planning, communication, and transportation 

infrastructure planning, can be easily made. Methods such as recording with vehicles with three-dimensional 

scanners and sensors, combining images from piloted and unpiloted aerial vehicles, and using satellite images 

are actively used for the detailed extraction of these maps.  
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The most detailed and high-quality annotations for land cover segmentation are collected through ground-level 

surveys and scanning. However, obtaining data with this method is challenging and expensive, especially in 

many areas where vehicle access is not possible, such as rural areas, coasts, islands, and mines. For this reason, 

efforts to obtain earth-use maps from satellite images cheaply in recent years have gained speed.  

Machine learning methods use the category of each pixel of images as label information to solve segmentation 

problems in satellite imagery. Thus, a pixel-based classification model can be trained with the training set 

obtained, and prediction can be performed on the test data. However, there must be enough data with quality 

labels in the training set for this process to be carried out successfully. In addition, it is crucial for training data 

and annotations to have content similar to the target problem data to achieve good performance [2].   

Since the data sets collected for remote sensing problems depend on the variety of satellite and autonomous 

aerial sensors, the standardization of annotations, and so on, it is quite challenging to find enough data to be 

used for the desired problem. Utilizing different public datasets will reduce dataset dependency. Training the 

model over different examples with datasets from multiple sources effectively achieves a higher capacity and a 

more comprehensive general model. 

In this study, we aimed to produce low-cost land cover maps to be used in studies to improve the 

telecommunication infrastructure. The main difficulty in obtaining these maps is the difficulty of labeling and 

recognizing the resulting labels and images due to the low resolution of satellite images of these regions. For 

this purpose, we propose methods such as semi-supervised learning, transfer learning, and combined learning to 

improve prediction success in low-resolution target data using city images and detailed images from other 

databases. In this method, we developed a model that extracts a land cover map using 20-meter resolution 

satellite images. We performed detailed hyperparameter analysis on this model with different architectures. 

Then we trained the model for a 20-meter resolution dataset using one and two-meter resolution datasets with 

semi-supervised learning and transfer learning approaches. We presented an analysis of these methods in our 

work.  

2. Related Works 

Segmentation is an image processing problem in which objects in the input image are estimated at the pixel 

level. Semantic segmentation aims to assign the same label to all objects in the same class. In particular, studies 

in this field have gained momentum with the emergence of deep neural networks and annotated large datasets. 

Fully Convolutional neural networks [3] (FCN) was the first method to apply deep neural networks to the 

semantic segmentation problem effectively. In the FCN method, the outputs obtained from the neural network 

layers of different sizes were collected, with the result obtained from the lowest layer, and quality image outputs 

of the object edges were obtained.  

U-Net [4], which has a similar structure, is one of the most well-known models in image segmentation. The U-

Net consists of two parts, the encoder and the decoder. While the encoder part extracts spatial-invariant features 

in the traditional CNN structure, The decoder part samples these features to the output image the same size as 
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the input image. The difference between U-Net from FCN is that it uses a multi-channel structure in the decoder 

section and delivers the semantic information to high-resolution layers. Unet++ [5] method uses skip 

connections from shallow layers to deep layers that combine low and high-level features for better predictions.  

Deeplab [6], with its atrous convolutional layer, extended the receptive field of the models, allowing them to 

train better quality segmentation models with fewer parameters. In the following years, many improvements 

were made to this model; DeeplabV2 [7], which can segment objects at different scales more consistently with 

ASPP (Atrous Spatial Pyramid Pooling), DeepLabV3 [8] with improvements on AC (Atrous Convolution) units, 

DeeplabV3+ [9] which developed an efficient decoder module to improve segmentation results along object 

boundaries on to DeeplabV3 model were developed. 

Identifying and assigning meaning to pixels in satellite images by semantic segmentation is an actively studied 

research area [10]. The complex nature of the backgrounds in satellite images and the high in-class variability of 

objects (such as buildings, cities, and roads) are among the main challenges of the segmentation problem. 

However, there has been much progress in this regard with obtaining high-resolution satellite images and 

developing deep learning-based semantic segmentation methods.  

Many U-Net-based models [11, 12] have been proposed for the urban image segmentation problem. The 

DeepResUnet [13] proposed by Yi and colleagues for building segmentation in urban areas has fewer 

parameters and performs better than the original U-Net, albeit with a longer inference time. Combining 

DeepLabV3+ [9] with object-based image analysis, Du and colleagues  [14] achieved successful results in ultra-

high-resolution satellite images. In that study, classification results obtained using a DeepLabv3+ network on 

the spectral image and a random forest classifier on the features obtained by image analysis were converted to 

final estimates with a conditional random field. In many recent studies, transformer-based models [15, 17] have 

been successfully applied to the semantic segmentation problem. 

Recently Wang and colleagues  [1] created HRNet, outperforming semantic segmentation architecture. They 

maintained classical encoder-decoder architecture to increase high-resolution representations. The classical 

encoder-decoder approach first encodes the input image as a low-resolution representation, then the decoder part 

process this low-resolution representation into a high-resolution representation. HRNet contributes parallel 

information exchange between these two parts, not in series as in the classical approach. 

Geonrw [18], Inria [19], and Deepglobe [20] are examples of remote sensing datasets created to make land 

cover maps. Geonrw is a data set of RGB and SAR remote sensing images mostly taken from urban areas by 

synthesizing with a generative adversarial network. In addition to having ten image segmentation classes, 

Geonrw is suitable for altitude estimation or semantic image synthesis applications from aerial photographs.   

Transfer learning refers to methods developed to use labeled data or models for one or more classes on a 

different but related task. The studies carried out in this field are summarized in the literature review by Wang 

and colleagues[21]. Supervised learning transfer is used if the feature space and the intended task are the same 

but differ between the feature distributions [22]. Suppose the target and source features differ or the data 
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annotations suit different tasks. The semi-supervised [23] or unsupervised transfer learning [24] methods are 

used on the target task. 

Studies on supervised learning transfer focus on field adaptation methods such as feature space alignment, 

adding loss functions that provide space adaptation to the model error function, or adding capacity to the model 

architecture to store shared and discrete model parameters between target and source tasks separately. With the 

popularization of deep neural networks, the most popular transfer learning method, which is widely used, is a 

fine-tuning method that uses the weights of a trained model at the initial weights of a new model [25]. Studies 

on supervised transfer learning are categorized into diversity-based, contrast-based, and reconstruction-based 

methods by Zhang [22]. Examples of the most popular difference-based methods are those that transfer between 

tasks using class information [26], methods that measure statistical distribution difference with distance 

calculations [27] such as MMD (maximum mean discrepancy), and various transferable methods such as 

domain-specific layers and normalizations [28] in the model architecture. 

Semi-supervised transfer learning is used successfully where large amounts of unlabeled or labeled data are 

available with a different distribution [23]. The methods used in this field can be examined in three groups 

methods that perform continuity regulation, methods that produce a common pseudo task or pseudo-label based 

methods, and generative methods. In continuity regulation-based methods, two different basic methods can be 

examined. The Minimum Class Confusion (MCC) method [26] is a method that increases the stability of the 

model over the unlabeled data by changing the model weights to make more stable predictions if the prediction 

of the model over the unlabeled data is not stable. Another approach uses methods such as randaugment [29], 

which make small and insignificant label changes. Minimizing the impact of these changes on class predictions 

is a popular method among semi-supervised transfer learning methods. Unlike these methods, an example of 

false label generation-based methods can be given as the noisy student method [30]. Unsupervised domain 

adaptation methods improve model performance on target domain data by utilizing source domain unlabeled 

data. Lee and colleagues [35] proposed a domain transfer method that utilizes source domain data by predicting 

each image label with maximizing prediction results. In this paper, we will explore the pseudo-labeling based 

domain adaptation method compared with MCC based method. 

3. Methodology 

3.1. Semantic Segmentation 

The extraction of land cover maps from satellite images is defined as a semantic segmentation problem. This 

study used four semantic segmentation architectures: HRNet, Unet++, DeeplabV3+ and BisenetV1 

architectures, and ResNet and Efficient-Net encoders. The flowchart of our semantic segmentation method is 

shown in Figure 1. 
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Figure 1: Semantic Segmentation Scheme. 

A large part of the satellite images given as input to the spatial segmentation methods that we use consists of 

5000x6000x3 channel RGB color pictures and labels of these pictures in the same size. In the first step of our 

training and testing method, a hyper-parameter optimization study was performed on these images for the 

training. As a result, all experiments were performed on 512x512 randomly cropped images taken over 

1000x1000 images extracted in grid form from large images. In addition, a test is performed using the 512x512 

sliding window method on 5000x6000 test images. Data augmentation is applied to cropped images to increase 

data diversity and make the trained models more robust to light, color, displacement, and rotation effects. The 

randaugment [20] method is used for data augmentation. In this method, increment methods such as translation, 

resizing, affine rotation, affine shearing, reversing the image, and random horizontal or vertical rotation were 

chosen according to our problem. Two data augmentation methods are randomly selected and applied to the 

image during the training. This method uses augmentation methods such as translation, resizing, affine rotation, 

affine shearing, reversing the image, and random horizontal or vertical rotation according to our problem. The 

degree of rotation is determined by taking ten equal sections between 0 and 150. As the training step progresses, 

the rotation limit is increased, and random selection is made from this section again. Following the data 

augmentation step, the images in the dataset are normalized with the mean and standard deviation values of the 

ImageNet dataset. 
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The Unet++ architecture, which is the first of the methods used during the training, consists of encoder and 

decoder structures similar to the letter U. Unet++ [5] added an array of nested convolution blocks prior to 

merging to the skip connection where the same size feature maps between encoder and decoder are transferred 

to reduce semantic information loss due to the separation of the encoder and decoder paths in the UNet 

structure, and updated these jumps to be more intense. The second architecture we use, the DeeplabV3+ method, 

uses methods such as atrous convolution and feature pyramiding compared to the Unet++ method. For this 

reason, it has advantages, particularly in the effect of objects being recognized by a wider area of influence on 

the image or in the recognition of objects of different sizes. Our experiments use Resnet50, Efficient-Net B3, 

and Efficient- Net B5 architectures as encoders. The Efficientnet architecture [32] is divided into two parts, 

convolution, point, and depth convolutions, thus reducing the computational cost. It was chosen primarily 

because of the ease with which the model complexity can be studied parametrically. HRNet architecture 

changes classical encoder-decoder architecture. This model uses s parallel encoder decoder path that shares 

representations parallelly using multi-scale parallel convolutions. HRNet model achieves the best building 

segmentation results in our experiments in urban cities. 

3.2. Transfer Learning with Minimum Class Confusion 

One of the main problems we encountered during the semantic segmentation training for satellite images is that 

the labels used in training need to be of more quantity and quality. In this study, the combined training method 

in which data from different sources are used at the same time in training in order to learn data from different 

sources together. Semi-supervised transfer teaching and learning methods using the Minimum Class Confusion 

(MCC) method [26] are used. In the standard training methodology used for all three methods, the data from the 

target and source datasets are sampled to each form half of the mini-batch during the deep neural network 

training. In the co-learning method, the total loss function is calculated over the signs yt and ys of the target data 

xt and the source data xs, as seen in Equation 1. The class label LSN represents the loss function in the formula, 

and f(x,w) represents the model output obtained with x data. Moreover, w constitutes the learnable model 

parameters.  

  (   (   ))     (    (    ))      (    (    ))   (1) 

The Minimum Class Confusion technique is a method that aims to minimize the classification error in the source 

data by converging the binary class confusion values of the estimates. This method inputs the output of a mini-

batch of logits from the model and multiplies it by its inverse to obtain a correlation matrix that converges to the 

class confusion matrix. The process of unknown re-weighting is applied to normalize probabilities and to reflect 

more weight of important samples. Following this, a category normalization is performed in mini-batches to 

minimize the impact of the number of classes available on weights. In the matrix obtained at the end of these 

operations, classes showing high confusion with each other give higher correlation results. Since the values on 

the diagonal of the resulting matrix will represent the confusion of each class with itself, it will enable the 

model, which uses the loss function that aims to maximize these values or minimize the remaining values, to 

make more stable predictions on unlabeled data. In the MCC method in semi-supervised training, the MCC loss 

function  LMCC is used for the source data, and the class label loss function is used for the current target data, as 
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seen in Equation 2. 

  (   (   ))     (    (    ))       (    (    ))     (2) 

In the MCC-based transfer learning, the MCC loss function for the source data and the class label loss function 

for the whole data set are used, as shown in Equation 3. 

  (   (   ))     (   (   ))       (    (    ))   (3) 

3.3. Transfer Learning with Pseudo Labeling 

We consider predicting regions from several regions from different map services problematic to our models. To 

deal with this problem, we enlarged our dataset with unlabeled images. Pseudo-labeling [35] is a semi-

supervised learning method that models training performed simultaneously with labeled and unlabeled data. 

Class labels that maximize prediction probabilities for the unlabeled training supervised part are selected. 

4. Experimental Results 

4.1. Datasets 

In this study, the Huawei Land Cover datasets HWLC16 and HWLC18 were created by Huawei, and the 

publicly available Geonrw and DeepGlobe datasets were used. The HWLC16 and HWLC18 datasets consist of 

satellite images taken from satellites by Huawei. The resulting images are at level 16 and level 18 according to 

OpenStreetmaps zoom levels [33]. The HWLC16 dataset consists of images with a resolution of 2.5 meters per 

pixel obtained from rural areas. This dataset contains 315 5000*6000 training and 110 test images with the exact 

resolution, and the labels have a lower resolution than the images. Each image has 21 classes of semantic 

segmentation labels with a resolution of 20 meters per pixel. Examples, class names, and colorings of this 

dataset are given in Figure \ref{fig:legend}. This dataset was collected from rural areas where high-resolution 

satellite imagery is difficult and costly to obtain. The images used as test sets are divided into rural and urban 

regions, the set on the city region is called urban_test in the tables, and the set on the rural region is called 

rural_test. 

 

Figure 2: Example RGB image and 21-class semantic segmentation labels of dataset HWLC16. 
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The second dataset, the HWLC18 dataset, consists of level 18 satellite images, a more detailed zoom level than 

the HWLC16. Each image comprises RGB color images with a resolution of 0.5 meters, while the labels have a 

quality of detail of 2 meters. In the study, 413 pieces of 5000*6000 pictures are utilized. The HWLC18 dataset 

consists of images of metropolitan cities and their surroundings, not rural areas, unlike the level 16 HWLC16 

dataset. The labels have much more detailed and high quality. However, due to the difficulty and cost of 

labeling at this level of detail, the total covered area is approximately 15 times smaller than the HWLC16 

database. Apart from these two datasets, Geonrw [34] and DeepGlobe [20] datasets are also used in the study. 

The Geonrw database consists of 7783 images with a resolution of 1 meter per pixel, in 1000*1000 dimensions, 

and was created by combining images taken from aircraft of various cities in Germany and includes ten different 

classes. The training set of the DeepGlobe dataset contains 1000*1000 7227 images, and each pixel corresponds 

to 0.05 meters resolution. This dataset has seven different classes. All supervised learning methods used in this 

study are made by reducing them to 5 classes, which are the subclasses of the data used above. These classes are 

in order: [‗unknown‘, 'urban', 'open_area', 'water', 'forest‘] 

4.2. Implementation Details, Evaluation Criteria, and Experiments 

In this study, all the experiments are performed using Pytorch. The model structures and weights in the SMP 

library [36] are taken as initial values. In the experiments, Nvidia 2080TI graphics cards are used for training 

with Automatic Mixed Precision. The model performance is calculated with the intersection over union (IoU) 

value calculated as described in Equation 4 for all classes in each image in the experiments. The average IoU 

value for each image is found by averaging the IoU scores of all other classes except the unknown class of that 

image. The total performance measurement is made on the dataset by taking the average of these values for all 

test pictures. 

     
  

        
       (4) 

The first experiment was conducted to determine the most appropriate semantic segmentation architecture to be 

used to extract land cover maps in this study. In this context, DeeplabV3+, Unet++, and BisenetV1 algorithms 

are tested with the Resnet50, EfficientnetB3, and EfficientnetB5 architectures, and their model capacities and 

suitability for the problem are compared. The test results are shown in Table 1. 

Table 1: The results of the experiments performed on the HWLC16 dataset with the architectures of different 

models. 

Model Encoder Rural Area Dataset City 

  mIoU Urban Open Area Forest Water Building 

BisenetV1 Resnet18 0.558 0.55 0.372 0.807 0.504 0.721 

Unet++ Resnet50 0.5874 0.6128 0.3636 0.7564 0.6167 0.76 

Unet++ EfficientnetB3 0.602 0.595 0.339 0.84 0.634 0.796 

Unet++ EfficientnetB5 0.592 0.582 0.324 0.846 0.618 0.787 

Deeplab+ Resnet50 0.458 0.471 0.249 0.704 0.331 0.703 

Deeplab+ EfficientnetB3 0.5856 0.584 0.3375 0.8267 0.594 0.68 

Deeplab+ EfficientnetB5 0.592 0.582 0.323 0.846 0.617 0.762 

HRNet EfficientnetB5 0.603 0.582 0.521 0.863 0.702 0.863 
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It is experienced that the model trained using the Unet++ architecture and the Efficient-Net encoder showed the 

most successful results in both the HWLC16 rural area test set and urban area dataset. The capacity of this 

model is higher than the BiseNetv1 model and smaller than the DeepLabV3+ model. When the outputs of 

different models are examined, the U-Net model can find sharper boundaries in segmenting small objects on the 

image, especially buildings, and inner-city neighborhoods. The failure to train more complex models such as 

DeeplabV3+ and EfficientnetB5 Encoder with the same success may be due to a lack of data, the excess of 

annotation errors in the dataset, or the fact that the training process is not long enough to find the best 

parameters. 

Following the architectural analysis, the capacity and best performance of the model were measured in training 

using a single database. To improve this performance, combined training, semi-supervised learning, and transfer 

learning methods were applied to use information from other datasets with similar data, and their improvements 

were compared. The results of these experiments are given in Table II. 

Table II: The table gives results on two test sets of the target HWLC16 dataset using different source data. The 

HWLC18->16 dataset contains images four times smaller than HWLC18. 

Source Dataset Transfer Method Rural Area Urban Area 

  mIoU Building Open Area Forest Water Building 

- - 0.602 0.595 0.339 0.84 0.634 0.796 

HWLC18 Combined Training 0.617 0.567 0.391 0.87 0.641 0.812 

HWLC18 MCC Semi-Supervised 0.632 0.614 0.405 0.849 0.66 0.869 

HWLC18 MCC Transfer Learning 0.593 0.545 0.371 0.852 0.606 0.518 

HWLC18->16 Combined Training 0.616 0.62 0.4 0.857 0.586 0.841 

HWLC18->16 MCC Semi-Supervised 0.615 0.621 0.395 0.844 0.6 0.861 

HWLC18->16 MCC Transfer Learning 0.636 0.621 0.422 0.861 0.64 0.901 

Geonrw Combined Training 0.62 0.616 0.372 0.826 0.666 0.842 

Geonrw MCC Semi-Supervised 0.573 0.546 0.269 0.856 0.622 0.925 

Geonrw MCC Transfer Learning 0.624 0.584 0.406 0.847 0.659 0.877 

DeepGlobe Combined Training 0.612 0.601 0.409 0.822 0.616 0.901 

DeepGlobe MCC Semi-Supervised 0.615 0.615 0.368 0.823 0.653 0.887 

DeepGlobe MCC Transfer Learning 0.533 0.583 0.121 0.837 0.593 0.923 

The first row in Table II gives the results from the supervised learning problem without using any source data. 

The HWLC18 database, which is in the source dataset, is labeled similarly to the HWLC16. The most 

significant difference between the two datasets is the city/rural area differences they cover and the size of the 

images. As seen in experiments with HWLC18 dataset without resizing, semi-supervised learning provides the 

most remarkable performance increase using only images without labels. Combined training and transfer 

learning cannot increase prediction performance due to differences in the distribution of labels, reducing it from 

60.2% to 59.3% in rural areas and from 79.6% to 51.8% in urban areas. 

We see that the transfer learning performance exceeds both methods in the experiments where we equate the 

image and label sizes, the main difference between these two datasets, and show them in the table with 

HWLC18->16. In these experiments, the success reached the highest at 63.6%, especially in rural areas targeted 

by the HWLC16 dataset. 
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Transfer learning experiments on the Geonrw dataset showed us the effect of differences between labelings on 

transfer success from different performances in rural and urban regions. While the Geonrw database is labeled 

with similar annotation rules as HWLC16 in land cover classes, it shows significant differences in the labeling 

of building regions. The areas between buildings are labeled as buildings due to low resolution in HWLC16. 

Geonrw has more detailed annotations in areas such as industrial regions and airports. The differences between 

the class definitions caused the transfer to perform worse than semi-supervised learning, especially in the urban 

dataset. In contrast, semi-supervised learning performed about 5% below the combined training and transfer 

learning in rural areas. 

Similarly, experiments with DeepGlobe dataset resulted in a 92.3% transfer learning success because the 

building labels in this dataset are similar to our problem. However, we suspect that the differences between the 

target areas and labelings of the datasets cause the targeted performance in rural areas to be lower than other 

datasets. We implemented the HRNet model to analyze building segmentation performance comparison with 

other models. Compared to other approaches, this model excelled in city regions, not rural area buildings. Table 

III shows that HRNet achieved nearly a 10% increment in IoU score in building segmentation. This model 

seems promising, and we will use this model for unsupervised domain adaptation model comparisons. 

Table III: THE BUILDING SEGMENTATION RESULTS OF THE EXPERIMENTS PERFORMED ON 

THE HWLC16 DATASET WITH THE ARCHITECTURES OF DIFFERENT MODELS. 

Model Encoder Rural Area  City 

  Village Building 

BisenetV1 Resnet18 0.55 0.721 

Unet++ Resnet50 0.613 0.76 

Unet++ EfficientnetB3 0.595 0.796 

Unet++ EfficientnetB5 0.582 0.787 

Deeplab+ Resnet50 0.471 0.703 

Deeplab+ EfficientnetB3 0.584 0.68 

Deeplab+ EfficientnetB5 0.582 0.762 

HRNet EfficientnetB5 0.578 0.863 

As in the previous experiments, we trained the HRNet model with the Efficientnet-B5 backbone with different 

supervision training types. Table IV shows the results of supervised training, pseudo-labeling-based 

unsupervised domain adaptation, and MCC-based unsupervised domain adaptation results. Pseudo-labeling-

based transfer learning performed better than supervised and MCC-based unsupervised training. Also, this table 

states that both transfer learning experiments improved the results compared to supervised training. 

Table IV: PSEUDO-LABELING TEST RESULTS. 

Source Dataset Target Dataset Transfer Method Number of 

Class 

Rural 

Region  

Urban 

Area  

    Village Building 

- HWLC18->16, HWLC16 Combined Training 4-Class 0.582 0.863 

Unlabeled HW HWLC18->16, HWLC16 Pseudo Labeling 4-Class 0.601 0.914 

Unlabeled HW HWLC18->16, HWLC16 Unsupervised MCC 4-Class 0.599 0.890 
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5. Conclusion 

In this study, we present the results of our research on using semantic segmentation methods with various multi-

source prediction methods for extracting land cover maps from satellite images on the HWLC16 and HWLC18 

datasets. 

In the experiments, the segmentation success of urban areas is 79.6 %, and in rural areas, 60.2 % was reached 

with the original resolution in the HWLC16 dataset. The addition of the high-resolution HWLC18 dataset, 

which has been taken from various sources and has the same annotation rules, through transfer learning 

increased segmentation performance to 90.1 % for urban areas and 63.6 % for rural areas in the same test set. 

Geonrw and DeepGlobe databases are used in training using a semi-supervised learning method because 

although these datasets have high resolution, they are annotated with different labeling rules and classes. The 

possible reason for this can be that transfer between these tasks leads to negative transfer. For these experiments, 

the urban area dataset performance increased to 92.3 %.  

In future work, we aim to improve the diversification of transfer learning and semi-supervised learning methods 

and improve the minimum class confusion method designed for classification by subjecting it to appropriate 

normalizations per the segmentation problem. Indeed we will modify minimum class confusion loss to be able 

to change priority according to epochs. Additional experiments with HRNet showed us that multi-scale fusion 

between encoder and decoder architectures in an end-to-end manner improved semantic segmentation results 

dramatically. To conclude, using several transfer learning approaches, we will conduct more experiments with 

this architecture to improve semantic segmentation results in rural and urban areas.  
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