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Abstract 

Classification Machines have evolved over a lot during recent times, in the field of engineering and sciences. 

Various classification schemes have been developed, taking into account, the aspect that can be optimized to 

give optimum system performance.  The feature set in a classifier system is very significant, since it determines 

the efficiency and performance of the machine. Three powerful feature sets possessing robust classification 

capabilities are discussed in this paper. Cepstral coefficient analysis based Kruskal-Wallis H statistic, F-test 

statistic and Discrete Sine Transform based feature sets are found to be very effective for detection and 

classification of signals. Simulation results for typical data set are also presented in this paper. Statistical 

estimators, Neural Network and Hidden Markov Model based classifiers, along with various deep learning 

algorithms can be incorporated along with these feature sets to implement an efficient classification machine. 

Typical results based on these feature sets are also presented for different signal sources.  

Keywords: Classification Machine; Discrete sine transform; Statistical estimators; Hidden Markov Models; H-

statistic; F-statistic.  

1. Introduction  

Various class of signals call for specific considerations because of the unique generating mechanisms that are 

known to create them at the source. The primary requirements of a signal classifier are the capability of 

extracting and selecting the right feature combinations, efficient processing and generation of unambiguous 

classification parameters from the source specific features. An efficient underwater target classifier, making use 

of non-parametric estimators is available in [1]. Speech recognition systems based on different source specific 

cepstral features are presented in [2, 5]. This work is significant in that the cepstral features possess unique 

characteristics for identification and classification. An audio classification system based on a biological feature 

set has been mentioned in [6]. A robust underwater target recognition system based on combined invariant 

moments of underwater images has been proposed in [7].  
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In the research work [8], a new Gaussian process classifier capable of accepting probabilistic training targets 

using an autonomous underwater vehicle is mentioned. The robustness and efficiency of the existing systems, 

depend on a large degree, the availability of source specific features which include those in non-acoustic 

domain. Also, in nonlinear environments, typical to that for underwater signals, the performance degrades, and 

the problem is accentuated by the presence of Gaussian ambient noise.  

Another class of feature set having significance is the discrete transforms. A study of discrete transforms 

exploited for prominent applications in signal analysis is presented in [10]. Of these, the Discrete sine transform 

(DST) which can be effectively utilized in the classification of underwater signal sources, operates on a specific 

function at a finite number of discrete data points [11]. DST is having properties similar to other transformations 

but when properly applied, they are capable of highly efficient performance in data enhancement and other 

signal processing applications. The system performance under nonlinear channel conditions has also been 

reported to be efficient. Various studies on stochastic classifiers like HMM, under noise conditions can be found 

in [12, 21]. 

2. Robust Feature Sets 

Three feature sets are presented in this paper, which can give high accuracy for a classification machine. The 

extraction of these feature set is of prime importance in the design and implementation of a statistical or 

stochastic classifier. 

2.1. Estimation of Transition Probabilities 

The signal is converted to frames of Ns samples, with adjacent frames being separated by md samples [1]. 

Denoting the sampled signal by s[n], the l
th

 frame of data by xl[n], and there are L frames, then, 

                                                                                                                                                 (1) 

Where n = 0, 1, …., Ns -1, and l = 0, 1, ….L-1. 

Each individual frame is windowed to minimize the signal discontinuities at the boundaries of each frame. If the 

window is defined as w[n], then the windowed signal xw is: 

                                                                                                                                                    (2) 

where 0 < n < Ns-1. 

Hann or Hamming window are typical for classifying machines and Linear Prediction analysis is performed [9]. 

The Linear Prediction Coefficients are then converted to the required number of Cepstral coefficients, which are 

weighted by a raised sine window. In the next step, a clustering process is applied to generate a code book 

which is again utilized in the estimation of transition probability vector.  For fixing the centroids of a cluster 

model, the K-means algorithm has been used.  
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The extracted cepstral coefficients of the signal source are being utilized as the data in this vector quantization 

process of cluster identification. A matrix is defined, which represents the data which is being clustered, in a 

concatenation of K clusters, with each row corresponding to a vector. The cluster centroids are generated as a 

vector with the cluster identity. The sum of square error function can be used, and a logarithm of the error 

values after each iteration can be returned in a variable, with the maximum number of iterations being specified. 

A vector of transition probabilities can be generated from the vector quantized output, for the estimation of H-

Statistics [1]. 

2.2. H and F statistics estimation  

The H and F statistics are estimated with the three-sample set consisting of the previously generated transition 

probability vector, a down sampled version of the signal and a predefined reference sample vector. A correction 

for ties can be made by dividing the H-statistic value by a Correction Factor(CF) defined as follows[1]: 

     
 

      
∑    

     
 
                                                                                                                     (3) 

where g is the number of groupings of different tied ranks, and ti is the number of tied values within group i that 

are tied at a particular value. This correction usually makes only negligibly small change in the value of test 

statistic unless there are large numbers of ties. 

2.3. Discrete sine transform (DST) based feature set 

For a sequence x(n), the DST and the Inverse DST can be defined as: 

   √
 

   
∑        (

   

   
) 

                                                                                                                 (4) 

     √
 

   
∑   

 
      (

   

   
)                                                                                                               (5) 

where n=1, 2,…N and k=1,2,…N. Ocean signal classification, making use of DST based features has been 

mentioned in [10]. DST based feature set has been modified by appropriate polynomials which render itself to 

efficient vector quantization by the algorithmic cluster analysis adopted by the system in connection with the 

training phase of the Hidden Markov Model. The DST based feature set is very robust and possess specific 

characteristics suitable for classification machines like Hidden Markov Models [11]. 

2.4. Hidden Markov Model based classifier machines 

 A Hidden Markov Model (HMM) is a doubly stochastic process that is hidden but can only be observed 

through another set of stochastic process that produces the sequence of observed symbols [15]. HMM can be 

regarded as the simplest dynamic Bayesian network. In a dynamic Bayesian network, the hidden state is 

represented in terms of a set of random variables, each of which can be discrete or continuous. The observation 
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can be represented in terms of another similar set of random variables. In a Hidden Markov model, each state 

has a probability distribution over the possible output tokens. Therefore, the sequence of tokens generated by a 

Hidden Markov Model is capable of giving information related to the sequence of states.  

The HMM consists of a finite set of states and each state is associated with a probability distribution. Transitions 

among the different states are governed by the parameter called State Transition Probabilities. In any state, an 

outcome is generated depending on the corresponding probability distribution. The states are hidden from an 

external perspective and only the outcome is visible, unlike a regular Markov process in which the state is 

directly visible to the observer. An HMM can be completely described in terms of the number of states, the state 

transition probabilities, the probability distribution in each of the states and the initial state distribution [18]. 

3. Performance of Classification Machines 

The unknown signal is processed and the extracted H and F statistic values are assigned to known signal 

categories by judiciously matching the component parameters. The performance of statistical classifier using 

simulation studies and the estimated H-statistic as well as F-statistic approximations, have been tabulated in 

Table 1. This approach and the featured statistical indicators possess increased robustness essential for the 

efficient capability of a classifier machine. 

Table 1: Estimated values of H and F statistics for signal sources. 

Signal sources Estimated H 

statistic 

Estimated F 

statistic 

Bagre 2420 5706 

Outboard 1951 2791 

Damsel 2115 3616 

Sculpin 1172 933 

Atlantic croaker 1987 3023 

Spiny 2450 6076 

BlueGrunt 2097 3570 

Dolphin 2146 3455 

01m 1172 940 

Barjack 2021 3050 

Bow1 2168 3939 

Boat 1494 1451 

Chord 2160 3783 

3Blade 1837 2372 

Torpedo 2563 9757 

Rockhind 2075 3394 

Snap1 2117 3632 

Scad 1990 2893 

Finwhale 2134 3875 

Seal1 2051 3187 

Garib 1896 2635 

Grunt 1955 3259 

Ocean Wave 2054 3558 

Minke 2130 3476 

Hump 2156 3838 

Searobin 1844 2394 
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Analytical studies have been carried out for validating the classification potential of the system, by selecting a 

suitable simulation platform. The system has been tested for different signals, and results have been tabulated. 

The source specific features are being utilized in the training of a twenty state Hidden Markov Model.  Using 

simulation studies, unambiguous classification has been achieved for various signal sources. The signal 

waveforms emanating from the target of interest have been sampled and recorded as a wave file and used as the 

input to the HMM classifier system. The unknown target signal to be identified is processed for the extraction of 

the desired features and they have been used in the recognition phase of the proposed stochastic classifier. The 

state transition probability distribution forms another important parameter determining the classification 

capability of the model. 

The system behavior under Gaussian ambient noise conditions has also been analyzed using simulation studies. 

The Gaussian ambient noise compensation performance of the classifier is studied and results are shown.  

Table 2 shows the classifier performance under different conditions of operation. For the trained HMM, the 

Performance Score is found to be 88% under ideal noise free environment, whereas with Gaussian ambient 

noise, the Performance Score of the classifier is seen decreasing but being compensated the introduction of 

filters. The performance score relates to the classification efficiency or the success rate of the system. 

                                  Table 2: Performance scores of DST based classifier machine. 

Conditions of Operations Performance Scores 

Without Ambient Noise 88% 
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20 dB 
With Butterworth filter compensation 85% 

With Chebyshev type 1 filter compensation 84% 

14 dB 
With Butterworth filter compensation 82% 

With Chebyshev type 1 filter compensation 82% 

10 dB 
With Butterworth filter compensation 78% 

With Chebyshev type 1 filter compensation 76% 

Under nonlinear conditions of second degree 85% 

For increased Gaussian ambient noise levels, with SNR of 14 dB, the tenth order Butterworth filter-based 

compensation gives a Performance Score of 82% while the same for the fifth order Chebyshev type 1 filter-

based system also gives 82%. For further increased Gaussian ambient noise levels, with SNR of 10 dB, the 

Butterworth filter-based compensation gives a Performance Score than the Chebyshev type 1 filter-based 

system.  

The classifier performance under nonlinear channel conditions, with a nonlinearity of second degree, has been 

studied, with Performance Score shown in Table 2.  

The feature set based classifier machine has enhanced the state of the art by its improved robustness in non-ideal 

and nonlinear underwater environments. 
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4. Conclusions 

The robust feature set for classification machines consists of the H-statistic as well as F-statistic approximations 

for different signal sources. These have been effectively utilized for the classification process as demonstrated 

by the simulation results. The system proposed for DST feature set in this paper makes use of a twenty state 

HMM for the detection and classification of various signals. The system performance under Gaussian ambient 

noise conditions and typical nonlinear conditions have also been analyzed in the studies. A tenth order 

Butterworth lowpass filter and a fifth order Chebyshev type 1 filter-based schemes are used for providing the 

required compensation for Gaussian noise. In the presence of a Gaussian ambient noise and also in nonlinear 

conditions, the proposed system gives robust performance, thus enhancing the success rate of the classification 

machine. 
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