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Abstract

Solar PV systems are now widespread across the globe. These systems generate electricity to fulfill the energy
demands together with the existing resources as well as power including medical facilities situated in remote
areas of Uganda where the main national electricity infrastructure has not been reached. In this paper, an off-
grid PV system for rural medical facilities and the emergency situation has been simulated and modelled using
the MATLAB Simulink toolbox. Because of the difference in temperature, solar irradiance, PV temperature,
shading conditions, ambient temperature, wind speed, and dust, the electrical power generated by a photovoltaic
(PV) module and hence the power sent to the load fluctuates, which rises the need to carry out analysis of the
entire PV system to obtain peak and maximum power under these variable situations. In this paper, a complete
off-grid PV module renewable energy generating system has been designed and simulated using
MATLAB/Simulink and performance has been analyzed by subjecting the PV panels to various irradiances
starting from 1 KW/m-2 for the Ugandan case. The simulation model consists of a solar PV array, and the
battery system, the converter power stage with PWM control, and charge controlling functions and the
performance of each block has been studied continuously. Finally, it has been found that this model is quite
capable to simulate both the P-V and I-V characteristics of a PV module, and based on the result it has been
forecast that the performance of several modules or even PV arrays connected in series and/or in parallel with

the delivery of maximum power can be tested under diverse temperature and solar irradiances.
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1. Introduction

A Solar off-grid PV system is called so because there is no grid connection available and the PV system work
independently [1, 2, 3]. For a rural, remote health facility load an off-grid PV system has components like PV
arrays (for generating electrical dc power), battery (if battery backup), Charge control unit (For controlling the
input and output charge during systems operations), inverter (for changing DC to AC power) and converter
(changing from one dc level to another) [4, 5, 6]. For the entire system design, it is important to do load

estimation and then followed individual component selection as per ratings and evaluations.

The problem of the energy predicament is becoming more and more impairing, resulting in increased
exploitation, corruption, energy wars, and therefore increase in research and search for new energy resources such
as tidal, wind, geothermal, water, solar energy, and biogas around the world today [7, 8, 9]. PV energy is
Renewable and consistently replenished energy, which is environmentally friendly and inexhaustible. Due to this
natural advantage, photovoltaic solar cells have been massively used to generate electric energy from sunshine
irradiance [10, 11, 12].

A solar device, cell, or module and array convert sun energy directly into electrical energy. Energy gotten from a
solar PV cell is not constant and consistent at all times. The amount of mined power from a PV system is a
function of the PV module current and voltage at a given point in time [13, 14, 15]. Additionally, the energy is
affected by external conditions like solar irradiance, wind speed, ambient temperature, and dust. During uniform
solar irradiance levels with no partial shading, the nonlinear current-voltage (I-V) characteristics of a, PV solar
module will have a single ideal operating point matching a unique maximum power point (MPP) on its power-
voltage (P-V) curve. In practice, since a solar module is comprised of various solar cells which are connected
with each other in parallel and in series, if some cells are on the irradiance or temperature variation the P-V
characteristics of solar modules becomes very complex as many maximum power points occur on the P-V
characteristic curves [16, 17, 18]. Due to the complicated behavior of a PV solar module under various
illumination conditions, it is important to construct a simulation model to systematically investigate the voltage,

current, and power relationship of a PV module under fluctuating surrounding circumstances.

2. Modeling of a PV Module-Based Power System

A PV cell is a simple PN junctionthat is fabricated in a layer of semiconductor material. When it is illuminated
by the sunlight of photons with an energy equal to or slightly greater than the band gap energy of semiconductor
material, it is absorbed and the valence electrons are knocked out from the atoms in the material and create
electron-hole pairs [19, 20] These photo-generated carriers are swept apart by the internal electric fields of this

cell and if the cell is connected by an external circuit, they contribute to current.

2.1. Load Estimation

In a health facility, the following appliances are common and table 1 shows appliances with their rating and

load estimations.
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Table 1: Load estimations.

LOAD WATTS Q UANTITHOUR TOTAL TOTAL
Y D AY WATTS WATTS-
HOUR/DAY
PORTABLE 15 1 6 150 900
REFRIGERATED 0
CENTRIFUGE
Portable STERILIZER 20 4 10 80 800
PORTABLE ULTRASOUND0 1 12 500 6000
SCAN/PORTABLE X-RAY|D
MACHINE
THEATRE LIGHTS 40 3 8 120 720
COMPUTER 15 1 2 150 300
0
TOTAL 960= 8720=
1000 8800

So a health facility load is = 1 kW or 8800 Wh/day.

For a1 kW load following PV components are required as shown in table 2.

Table 2: PV Components and their ratings.

COMPONENT DESCRIPTION RESULT
Load Estimated 0.8 kW
PV array Size 1 kKW

Total panels 2

In series 2

In parallel 1

Panel power 295 Wp
Charge controller Capacity 52

Number of controllers 3
Inverter Size 2 KVA

The PV panel or module has the following specifications as shown in table 3.

Table 3: PV module specifications.

Parameter \Value

Peak power 295 watts
Module Efficiency 14.7%

Peak power voltage 36.51 volts
Peak power current 8.08 amps
Open circuit voltage 44.78 volts
Short circuit current 8.30 amps
Number of cells 72 cells

Max. System voltage 1000 volts DC

The block diagram of the system is shown in figure 1.
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Figure 1: Block Diagram of the system.

NOTE: The entire systems design has four main components namely.

1. PV module. This is responsible for the generation of energy using radiation and solar irradiances. The
system has 2 solar panels of a monocrystalline type.

2. Buck-boost converter. The main role of this component is to change power from one level to another by
specifically increasing it.

3. Battery. this is responsible for storing the charge and presenting it for use if the sun cannot give enough
irradiancies, the system has two batteries each has 50ampere Hours and 12volts

4. Inverter. This is capable of changing dc power to ac power to use by the ac loads, the inverter is of a
bridge connection single phase. This is capable of giving 1000 w or 1 kw at the output. The single-phase
inverter is connected to (IDSD) which is Inverter Driver System with a Display whose main role is to

convert single face to three phase power.
2.2. PV Array Modeling

PV array in MATLAB Simulink is a mathematical model which uses the equations of the equivalent circuit
model of the solar cells. This PV array configures according to the requirements of the model. Figure 2 shows a

PV array:
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Irradiance

25

Temperature

Figure 2: PV array subsystem.

2.3. Buck-Boost Converter Modeling

A buck converter with a fixed duty cycle is modeled to give constant output DC of 48 V. The circuit and
Simulink model of the buck converter is shown in figures 3 and 4.

PW M Generator

(oC.DC) 18]
P D 09
)
P
Logical
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Buck Boost Converter Subsystem

Figure 3: Buck converter subsystem.
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Figure 4: Buck converter model.
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NOTE: Here values of inductor (L), capacitor (c), duty cycle (D) and PWM switching frequency (Fs) are:
L >0.0056 H C=156e'f

D =0.42 and F; =10000 H,

2.4. Inverter Modeling

Here all the appliances need AC power for their working so the inverter is necessary for the system which gives
AC output with desired level (120 V/230 V). The Inverter in this model is built by using the PWM technique.
Sine wave and a triangular wave is compared to generate PWM which is used to switch on/off semiconductor
switches and DC input is converted into AC [21, 22, 23]. A transformer for the step-up of converted AC is used
to get desired AC voltage level (230 V here). Figures 5, 6, and 7 show the inverter model in MATLAB.
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Figure 5: Inverter subsystem.

Discrete,
T=ie08s ”

Fubse

[
L ]
R {EF {’p} F— =]

l I Il Voimge Scops
Pube LOAD —.E’—
Generator B

+]| DC Veoltage Source
T 4evpc 1

Maosfet 4 :g-‘—;{‘ Mastet2 {E
w» w

=T~ afe—

Figure 6: Inverter model.
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Figure 7: Inverter simulation.

NOTE: The circuit above shows the single-phase bridge inverter powered by two pulse PWM generators, one for

current and the for voltage after powering in the discrete mode they produced the discrete waveforms for current
and voltatge respectively.The graphs were obtained before connecting the inverter circuit in the main circuit.

2.5. Battery Modeling

Battery specifications are shown in figure 8 below.

E) Block Parameters: Battery
Battery (mask) (link)

Implements a generic battery that model most popular battery
types. Temperature effects can be specified for Lithium-Ton battery

type.

Parameters Discharge

(41 Determined from the nominal parameters of the battery

Maximum capacity (Ah)
45
Cut-off Voltage (V)
36
Fully charged voltage (V)
55.8714
Nominal discharge current (A)
19.5652
Internal resistance (Ohms)
0.010667
Capadty (Ah) at nominal voltage
40.6957

Evnanantial yana Nialkana MO Fanact: FARV

Cancel Help

Apply

[ﬂ Block Parameters: Battery
45

Cut-off Voltage (V)
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Fully charged voltage (V)
55.8714

Nominal discharge current (A)
19.5652

Internal resistance (Ohms)
0.010667
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40.6957

Exponential zone [Voltage (V), Capacity (Ah)]
[51.8585 2.21087]
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[[6.5 13 32.5]

Units Time - Plot

Cancel Help

Apply

Figure 8: Battery modeling dialogue box.
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This clearly shows the parameters and specifications of the system’s design. The battery model is shown in
figure 9.
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Figure 9: Battery Model.

The battery is used to store charge but the charge must be controlled that’s why it has diodes, capacitors,
inductors, and resistors, these will also help to filter out ac signals and further boost the charge for storage.

2.6. PID controller selection and scoping

PID controller selection and scoping are shown in figures 10 and 11 respectively.

Ll This biock implements continuous- and discrete-tme PID cortrol algorthms and indudes advanced features such 2s
This block implements confinuous- and discrete-time PID control aigorithms and includes advanced features such 2s anti-windap, extemal reset, and Sgnal tradking, You can bune the PID gains automatically using the 'Tune...' bution
anti-windup, external reset, and signal fradking. You can fune the PID gains automatically using the ‘Tune..." button (requires Simelink Controf Design).
{requires Simudink Control Design).
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Figure 10: PID controller selection using MATLAB.
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Figure 11: System’s scoping and scaling.

3. off-Grid PV System Model with No Load
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The models of the PV array, Buck converter, and Inverter is connected to make an off-grid PV system

model. Figures 12, 13, and 14 show the PV system in MATLAB Simulink without load.
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Figure 12: PV system Simulink model without load.

At no load and standard operating conditions (1 kW/m? irradiance and 25° C operating temperature), the

following results are obtained as shown in figure 13.
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Figure 13: System Simulation on No Load.
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On no load the graphs show the following the load current curve is zero, the load voltage curve shows increased
voltage and low power, the battery voltage is low, and the state of battery charge is in a decreasing mode

together with the boost voltage as the irradiance varies within the limits.
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Figure 14: System Simulation on No Load Zoomed in.
After zooming this is how the various curves look like from the MATLAB tool of Simulink
4. off-Grid PV System with Load

Now the model is connected to a 1 kW load which is estimated. Figures 15 to 20 show the model with load and
results obtained from the simulation. These results are taken at standard operating conditions (1 kW/m?

Irradiance and 25¢ C operating temperature of array).
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Figure 15: Inverter integration in the Circuit simulation.

Integrating the inverter into the entire system design means powering it with the PV array, battery, and

converter. This produced a compressed waveform of voltage and current sinusoidal in nature.
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Figure 16: Inverter Simulation after zooming in.
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After zooming in the waveforms for current and voltage became more visible and clearer which further makes it clear

to determine the various characteristics of these waveforms.
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Figure 17: Inverter simulation after the change of inputs.

After changing the inputs, the MATLAB tool gave sawtooth waveforms for both currents and voltage.
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Simulating the system on load it showed a steady and constant current, voltage, and power, this resulted from a

steady change in the irradiance at a fixed time constant.
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Figure 19: Increased Irradiation and Checked Inverter then zoomed in.

After zooming in the waveforms of current, voltage and power became distinguishable as they clearly showed

the amplitudes or speakers and troughs as some of the features are exhibited by sinusoidal waves.
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Figure 20: 3 Scope together the inverter PV battery.
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5. System Function Inputs

This shows how all the input functions or equations are generated and fed into the software MATLAB/Simulink

using continuous or discrete modes. This is illustrated in figure 21.

ip

Curent Measurement

v
u

Vottage Measur ement

Universal Bridge

Temperature Block Parameters: Fcn

Fen

Example: sin(u(1)*exp(2.3*(-u(2))))

Parameters

e Expression:

General expression block. Use "u" as the input variable name.

[sin(240*50*u(1))7u(2)

cCE J Cancel Help

Apply

'

Constant

Figure 21: System’s block parameters.

6. System Integration

e T e

Series RLC Branch

Series RLC Branch1

Series RLC Branch2

Here the proposed renewable energy systems are modelled according to various part and components that make

up this system, for example, the system comprises of the inputs with parameters such as temperature,

irradiancies, and the outputs consists of power, voltage and current. Other key components include the PV array,

converter, inverter, battery, and their controls plus monitors together forming the charge control unit of the

system as shown in figure 22.
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Figure 22: Entire system’s integration on Load.

Figure 22 shows how the individual components were assembled and simulated to come up with this whole

design. The PV, Converter, and Battery Integration are shown in figure 23.
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Figure 23: The PV, Converter, and Battery Integration.
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7. Input Characteristic Curves of the System

I-V and P-V curves after simulation at different irradiancies input characteristics are shown in figure 24.
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Figure 24: 1-V and P-V curves after simulation at different irradiancies input Characteristics.

The graphs above shows that increase in irradiance increase short-circuit current as well as open-circuit voltage.
Again this further shows that increase in irradiance increases the overall power output. Furthermore irradiance
affects the power output in such a way that when the sunlight reduced this resulted in a reduction in current

hence a reduction in the power output as well.
The graphs show increasing the irradiance increase the voltage together with current and power.

I-V and P-V curves at different temperatures are shown in figure 25.
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Figure 25: 1-V and P-V curves at different temperatures.
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The current-voltage characteristic curve shows that the higher the temperature the lower the open circuit voltage
and the higher the short circuit current. The graph, further shows that the increase in temperature will reduce the
power and the power will increase as temperatures decrease this is so because temperature generates heat that in
general leads to the reduction of the overall efficiency of the system. It should be noted that as the temperature

of the solar cells increases the output voltage is reduced linearly and the output current increases exponentially.

8. Input and Output Waveform

The input and output waveforms are shown in figures 26, 27, and 28.

Figure 26: Battery Input and Output.

load Ea]

WV Converter

Figure 27: Converter Input and Output.

294



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS (2022) Volume 90, No 1, pp 277-299

V inverter

2 N NA N Ac

Figure 28: Inverter Input and Output
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9. Output Analysis of the System

The output analysis of the system is shown in figures 29 - 31.
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Figure 29: Results at 1500 W/m? Irradiance.
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Figure 30: Graphs showing outputs at 1500 W/m? Irradiance.
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Figure 31: PV boast converter Final results at T=9.597.
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10. Battery Operation

The battery in this system serves the role of storing the charge when there is no sun irradiance and deliver power
to the load as required. Battery charge is controlled by a battery control system to prevent overcharges and
undercharges that would actually damage the battery, this control system is extra sensitive to avoid necessary
delays in switching from the array when the load is less and excess power is generated by the array and the
battery discharge through the load when there is no power from the array. To avoid the under-discharging of
battery state of charge is monitored and when it is less than 25% battery disengages form the load by the

breaker.

11. Conclusion

This study presents a simple, efficient, and reliable renewable energy system (off-grid photovoltaic system) for
medical facility loads located in rural isolated communities of Uganda, this system will meet the daily load
demands during normal and emergency conditions. These results show that the average daily load requirement
of such a medical facility is 8800 Wh/day. In order to meet this load demand, an array of solar panels is
required. Modeling and simulation of the system show how the input results and the output results are analogous

to each other, hence giving output load at standard operating conditions and at any instant.

A renewable energy system has been designed, analyzed, and simulated by MATLAB/Simulink using standard
solar radiances data for Uganda. In order to achieve the performance, first each component and subsystem have
been validated and analyzed. From the output characteristics of the PV module, it has been shown that the
module is capable to deliver 130 W maximum power to the load under the effects of certain irradiance G=1
KW/m-2 and temperature T=45°C, which is very close to the desired data sheet value. PWM is able to get the
operating point of the photovoltaic module at the maximum power point level and the charge controller controls
the charge of the battery as has been shown in the simulation. It can be therefore concluded that a significant
amount of additional energy can be extracted from a photovoltaic module by using simple maximum power
point trackers and charge controllers and efficiency can be improved for the operation of renewable energy
generation systems. The improved efficiency should prime to significant power savings and investments in the
long run and at the same time provide information about the types of devices that should be chosen. In
conclusion, it can be said that this simulation model will serve as a good tool to test the performance of any PV

module/array under the variation of irradiance and temperature condition.
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