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Abstract 

This study aims to generate synthetic daily rainfall data for 39 meteorological stations in Jordan by estimating 

the distributional parameters of daily rainfall occurrence and amounts. Daily rainfall occurrence was modeled by 

the use of rainfall interarrival times, which were fitted to the one-parameter exponential distribution, except zero 

values which were represented using the ratio of the number of zero interarrival times to the total number of 

times, which was called zero ratio. Daily rainfall amounts were fitted to the two-parameter gamma distribution. 

Goodness-of-fit for one of the stations was tested using chi-square test. This test was performed using Microsoft 

Office Excel. Distributional parameters were calculated for both occurrence and amounts models, and 100 

sequences of synthetic daily rainfall data were then generated, of which every sequence included 1000 non-zero 

daily rainfall data points (1000 wet days) and 1000 interarrival times (1000 dry spells of which some have a 

length of zero). These sequences were generated using the embedded random number generators in Python, for 

one-parameter exponential distribution, two-parameter gamma distribution, and uniform distribution. Percent 

errors were then calculated and found all to be less than 10%, which was considered acceptable. 

Keywords: rainfall; daily rainfall; synthetic data; occurrence model; amounts model; gamma distribution; 

exponential distribution; Jordan. 

1. Introduction 

1.1. Overview 

Rainfall maintains the hydrological cycle and plays a critical role for sustainable agro-economical, water 

management and sustenance of human livelihoods [1]. Also, rainfall precipitation is one of the most important 

weather variables in simulation models [2]. Since the availability of the weather data limits the applicability of 

the simulation method [3], stochastic rainfall models (SRMs) are used as tools for creating long unlimited 

rainfall time series data whose statistical properties are close to those of observational records [4]. They are used 

for augmenting rainfall time series, producing multiple climate realizations for vulnerability assessment, and 

generating synthetic rainfall records for ungauged stations through interpolating model parameters from 

adjacent gauged sites [5, 4]. 
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Precipitation is the most important variable in the rainfall–runoff models and extreme flood runoff models for 

analyzing dam safety risk, assessing flood and drought risk, designing infrastructure, managing water resources, 

and examining reservoir operations and performance [6, 4]. Stochastic rainfall data are also often used as inputs 

into hydrological models to quantify uncertainty in environmental systems associated with climatic variability, 

which facilitates making decisions about risk-based design and system operations [7]. Due to the scarcity of 

historical data, randomly generated synthetic data (stochastic replicates of the historical data) that are based on 

the statistical characteristics of the historical data are important to overcome the scarcity issue, since the 

synthetic data can be used for estimating the missing historical data due to their similarity in the statistical 

characteristics. Also, forecast accuracy of rainfall models depends in the first place on the reliability of the past 

rainfall data provided to the model [8]. 

Simulation of rainfall over a region for long time-sequences can be very useful for planning and policymaking, 

especially when the economy is heavily reliant on rainfall [9]. SRMs are useful in the fields of water resources 

management, hydrology, ecology, meteorology, and agricultural science and engineering, and help in water 

resources planning, reservoir and watershed management, flood risk assessment, drought risk assessment, 

rainfall–runoff models, hydraulic structure design, infrastructure design, erosion prediction, design of landfills, 

design of facilities for storage and disposal of hazardous wastes, agricultural production and planning, crop-

yield models, and climate change impact studies [5, 4, 10, 11, 6, 7, 12, 1]. Thus, proper monitoring and 

forecasting of rainfall are inevitable [1]. 

Simulation of rainfall precipitation has two proposed basic approaches: physical and mathematical approaches 

[10]. Physical approaches are limited in their scope and applicability due to the complexity of the underlying 

rainfall generation mechanisms [10]. Mathematical approaches are more widely used and called stochastic 

approaches as they consider rainfall precipitation as a random process [10]. 

Rainfall precipitation is considered a stochastic process. The basic stochastic processes follow the point process 

theory [6]. A point process is the process of occurrence of an event continuously along a temporal or spatial 

dimension. For instance, the arrival of a vehicle to a certain point on a road is a time series event, since the 

position is fixed, and the events occur during a time interval. This is called a temporal point process. If the time 

is fixed and a picture is taken to the whole road, the positions of the vehicles on the road form a spatial point 

process. The point process of interest in this study is rainfall precipitation, which is a temporal point process. 

Point processes are Poisson processes, of which the time intervals among successive points follow the 

exponential probability distribution. When the time is divided into equal-width classes, e.g., 24-hour classes, 

frequency analysis can be done and histograms result. The shapes observed in the histograms usually follow the 

gamma probability distribution. In this study, daily rainfall precipitation is modeled. Thus, the width of classes 

into which the time is divided is equal to one day. The time interval between each two successive rainfall 

precipitation events is called interarrival time. Interarrival times describe the occurrence model, while the 

frequency analysis of the rainfall precipitation depths describes the amounts model. 

One of the challenges in the simulation of rainfall precipitation is achieving satisfactory representation of the 
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observed process with high comprehensibility, applicability, and computational soundness, without falling into 

over-parameterization [10]. 

Different timescales are used in rainfall modeling and range from a year to a few minutes, but the daily 

timescale has been gaining the highest attention [10]. 

The simulation scheme of the SRMs is based on two steps of random processes: occurrence model and amounts 

model [4, 10]. One of approaches for simulating rainfall occurrence is the alternating renewal process. In the 

alternating renewal process, lengths of consecutive wet and dry spells are considered a random variable in a 

truncated negative binomial or truncated geometric probability distribution, or a mixture of two geometric 

distributions [10]. Unfortunately, parameter estimation in the alternating renewal process is problematic. This 

problem can be overcome by using another approach for simulating rainfall occurrence that is the Markov chain 

(MC) process, which is the most widely used base of the occurrence models due to its simplicity and 

effectiveness [4, 13]. Transformation of MC transition probabilities are used to rewrite MC-based models as 

generalized linear models (GLMs), which can be incorporated in commonly available statistical packages [10]. 

In an MC, the state of a day is estimated based upon the state(s) of its preceding day(s) [10]. The number of the 

preceding days on which the state of the day of interest depends is called the order of the MC [11]. Despite the 

wide use of first-order MCs for daily rainfall simulation, higher-order MCs are getting more popular in sake of 

improving the dependence structure of wet and dry spells, especially for long dry spells [4]. Low-order MC-

based models (i.e., first- and second-order) cannot satisfactorily reproduce observed low-frequency variability; 

cannot be generalized to represent spatial dependence across multiple point locations; underestimate the 

interannual variability of wet days, which is governed by the day-to-day and low-frequency variations in the 

rainfall; and provide poor distribution of number of wet days and rainfall totals at annual time scale [2]. These 

shortcomings can lead to improper evaluation of the hydrological or agricultural behavior of a region and 

suboptimal policies for system management [2]. The variance in the rainfall that is unexplained by low-order 

MC-based models (i.e., overdispersion) is said to be associated with climatic nonstationarity and/or longer time 

scale variations in the rainfall [2]. In order to incorporate these factors in an SRM, a covariate containing 

atmospheric signals can be imposed to allow variations in the SRM parameters, which can also be conditionally 

modified based solely on previous values of aggregated time scale predictors [2]. 

Amounts models are classified into parametric, semi-parametric and nonparametric models [5]. In parametric 

methods, the shape of the underlying probability density function (pdf) and correlation structure are presumed, 

while in nonparametric methods neither is presumed, and the pdf is characterized by the observed time series 

[10, 14]. In parametric methods, rainfall amounts can be simulated conditionally or unconditionally [10]. In 

conditional simulation, rainfall amounts have different probability distributions depending on the states of the 

corresponding wet days, whether they are similar to or different from the day of interest, while unconditional 

simulation assumes a generic distribution for the rainfall amounts [10]. Probability distributions incorporated in 

parametric approaches are highly positively skewed and include two-parameter gamma, shifted gamma, one-

parameter exponential, three-parameter mixed exponential, kappa, and Weibull distributions [10, 11]. The 

advantage of the parametric techniques is their capability for extrapolation of non-observed extreme values [5, 

4], but the nonparametric techniques are more widely used due to their simplicity and high capability of 
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reproducing observations, although the latter lacks the extrapolation ability for unobserved extremes [5, 14]. 

Recently, mixed and hybrid probability distributions have been used in parametric techniques, e.g., mixed 

exponential, double gamma, and GP-Type III distributions [5]. The advantage of these probability distributions 

is their ability to reproduce the whole range of rainfall amounts, including the most extreme rainfall [4]. 

Examples of nonparametric techniques include histograms, nearest-neighbor algorithm, and kernel density 

estimation approach [5, 10, 14]. WGEN, CLIGEN, ClimGen and WeaGETS are examples of recently generated 

MC-based SRMs with parametric probability distributions [4]. 

Seasonality (periodicity) in rainfall simulation can be expressed in two approaches; one is imposing a seasonal 

trend on the important model parameters, such as a polynomial or Fourier function, and the other is handling 

seasons discretely [10, 11]. Different seasons may have different probability distributions or different 

dependence characteristics [10]. In Fourier series, every day of the year has its own unique model parameters, 

while in other models, days are grouped into seasonal groups for which the parameters are estimated [14]. 

SRMs can represent one point location (single-site models) or multiple point locations (multi-site models), of 

which the latter is comparatively complex [5, 2]. A simple approach for developing a multi-site model is to 

extend single-site models by driving them with temporally independent but spatially correlated random numbers 

[5, 2]. Also, multi-site models sometimes use transformations of the multivariate normal distribution, but when 

nonparametric methods are adopted, nearest-neighbor resampling is an easy choice [14]. The spatial and 

temporal intermittence of daily rainfall makes it the most difficult weather variable to simulate [11]. 

SRMs suffer the limitation of not representing rainfall event characteristics, which include wet spell (rainfall 

duration), total rainfall amount in one rainfall event (rainfall depth), distribution and dependence structure of 

daily rainfall amounts in a wet spell (temporal rainfall patterns), and the correlation structure of these three 

characteristics [4]. Rainfall event characteristics have essential influences on runoff and flood modeling. In 

multi-day extreme rainfall events, flood volume and duration are highly influenced by rainfall depth and 

duration, and the resulting surface runoff is significantly affected by their dependence structure [4]. Also, 

rainfall peak delay in rainfall events increases the severity of the resulting runoff and floods, which is an 

example of the importance of the effect of temporal rainfall patterns [4]. Consequently, the importance of 

including rainfall event characteristics in SRMs can be concluded. Thus, event-based rainfall models (rainfall 

event models), which reproduce rainfall event characteristics, have been developed to overcome the limitations 

of SRMs [4]. However, the output of rainfall event models can only be used as input to event-based 

hydrological models, since it is in the image of a sequence of rainfall events [4]. For this reason, a recently 

published research paper has suggested an MC-based SRM named as SDRM-MCREM (stochastic daily rainfall 

model with Markov chain rainfall event model) that generates rainfall time series while maintaining rainfall 

event characteristics [4]. 

Rainfall event models are classified into profile-based and pulse-based models, with representative Barlett-

Lewis and Neyman-Scott models [5]. 

Rainfall depth and duration can be simulated jointly by copula functions or stochastically using Monte-Carlo 
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method which is preferred to be used for simulating temporal rainfall patterns as well [4]. 

1.2. Study area 

This study includes 39 rainfall stations across Jordan, of which the IDs, names and locations are shown in 

Figure 1. As a summary of their descriptive information, the years of record of the stations range from 22 to 78 

years, except one station that has only 9 years of record. In more detail, 15% of the stations have 78 years of 

record, 33% more than 70, 40% more than 60, and 60% 50 years or more. 

All rainfall precipitation records are from October to May, except one record in June for Ras Muneif 

evaporation station. The number of rainy days in each month. These records are all in October and May, which 

are the beginning and the end of the rainy season, respectively. 

1.3. The significance of the paper 

Research in Jordan lacks focus on rainfall stations. One previous research paper was found to study 13 

meteorological stations in Jordan [15]. Another paper studied 6 stations [16]. Other research papers were found 

to study only 3 stations [17, 18]. This paper studies 39 stations across Jordan. 
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# ID Name # ID Name 

1 AD0019 Mafraq Airport 21 AN0003 Na'ur 

2 AD0021 Turra 22 CC0001 Madaba 

3 AD0032 Baqura 23 CC0004 Mushaqqar 

4 AE0002 Irbid 24 CD0001 Sahab 

5 AH0003 Ras Muneif 25 CD0002 Yaduda 

6 AL0010 Deir Alla 26 CD0005 Jiza 

7 AL0015 Zarqa 27 CD0010 Rabba 

8 AL0016 Ruseifa 28 CF0006 Ghores-Safi 

9 AL0018 Jubeiha 29 CF0007 Hasa 

10 AL0019 Amman Airport 30 DA0002 Shaubak 

11 AL0020 Ain Ghazal 31 ED0001 Aqaba 

12 AL0035 Baq'a 32 ED0012 Ram 

13 AL0048 Khaldiya 33 F 0002 H5 

14 AL0053 King Talal Dam 34 F 0003 Azraq Police Post 

15 AL0054 Hashimiya 

35 F 0009 

Azraq Evap. 

Station 
16 AL0055 Wadi Dhuleil 

17 AL0059 Um El-Jumal 36 G 0002 Jafr Police Post 

18 AL0066 Khirebit Es Samra 37 G 0003 Ma'an 

19 AM0001 Salt 38 G 0008 Jafr Evap. Station 

20 AN0002 Wadi Es-Sir 39 H 0001 H4 

Figure 1: The 39 rainfall stations included in this study across Jordan. 
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Table 1: Number of rainy days in each month for each station 

Name Oct Nov Dec Jan Feb Mar Apr May Name Oct Nov Dec Jan Feb Mar Apr May 

Mafraq Airport 92 181 312 403 368 238 107 44 Na'ur 86 253 477 537 539 424 176 40 

Turra 68 162 294 370 331 260 125 25 Madaba 77 264 455 544 511 405 141 39 

Baqura 95 249 381 447 386 320 117 28 Mushaqqar 36 94 185 248 249 148 35 11 

Irbid 149 318 513 609 569 483 224 69 Sahab 41 151 252 346 303 198 81 11 

Ras Muneif 139 268 433 492 435 393 180 46 Yaduda 6 56 116 125 120 103 36 11 

Deir Alla 122 279 458 559 488 411 160 53 Jiza 45 147 275 367 310 227 71 12 

Zarqa 68 191 312 414 359 279 95 42 Rabba 58 209 380 473 442 335 121 18 

Ruseifa 55 166 303 385 340 264 85 28 Ghores-Safi 25 51 96 145 131 89 38 5 

Jubeiha 107 326 536 665 602 508 202 61 Hasa 22 61 68 104 81 82 24 6 

Amman Airport 137 354 600 734 712 564 255 99 Shaubak 67 150 278 382 305 251 112 26 

Ain Ghazal 4 18 51 57 65 46 22 10 Aqaba 27 47 105 119 87 77 45 9 

Baq'a 86 196 350 413 413 316 119 39 Ram 8 14 21 43 24 23 13 2 

Khaldiya 29 77 112 173 154 98 33 18 H5 64 162 251 304 310 227 111 49 

King Talal Dam 46 146 242 300 310 218 68 21 
Azraq Police 

Post 
15 28 42 48 25 40 12 5 

Hashimiya 30 94 141 174 182 115 45 15 
Azraq Evap. 

Station 
33 79 131 199 153 112 49 20 

Wadi Dhuleil 52 134 236 312 301 208 71 23 Jafr Police Post 13 33 37 34 29 30 24 5 

Um El-Jumal 49 160 250 320 288 210 85 26 Ma'an 52 86 138 218 171 152 57 26 

Khirebit Es 

Samra 
35 87 161 188 190 95 29 8 

Jafr Evap. 

Station 
21 19 28 35 32 27 18 4 

Salt 105 302 526 618 610 503 196 64 H4 104 154 253 292 272 236 157 81 

Wadi Es-Sir 100 277 520 587 545 431 190 41 
         



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2022) Volume 88, No1, pp 213-232 

220 

 

2. Methodology 

2.1. Goodness-of-fit 

Chi-square test is a well-known statistical goodness-of-fit test for testing whether a dataset follows a certain 

probability distribution. In this study, chi-square test was applied for Mafraq Airport station dataset for both 

occurrence and amounts model. That is, it was used for testing whether the interarrival times followed the 

exponential distribution and whether non-zero rainfall precipitation depth data followed the gamma distribution. 

It was shown that both sets of data followed their corresponding probability distributions except for a simple 

modification that was needed for the interarrival times’ test. This modification was made to exclude zero 

interarrival times from the model and represent them by a new parameter called zero ratio. This parameter is 

explained in section 3.3.1. 

2.2. Model calibration 

2.2.1. Occurrence model 

Occurrence model was constructed based on the concept of interarrival time. An interarrival time is the period 

between two successive rainfall events. In other words, it is the number of dry days between every two 

successive wet days. According to previous studies, interarrival times follow a statistical probability distribution 

called exponential distribution. The exponential distribution has one parameter called lambda. Lambda is 

calculated using the following equations: 

𝜆 =
1

𝑚𝑒𝑎𝑛
 (6) 

𝜆 =
1

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (7) 

Therefore, lambda in this study was calculated using the following equation: 

𝜆 =
1

2
(

1

𝑚𝑒𝑎𝑛
+

1

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
) (8) 

In this study, however, this parameter was found not to be enough for modeling interarrival times. A huge 

inclination was detected in the zero values of interarrival times. Therefore, a new parameter was created to 

overcome this error. Lambda was hence used for modeling only interarrival times greater than zero. This means 

that interarrival times with a minimum of one day were found to follow the exponential distribution. Zero 

interarrival times were represented by taking a normalized ratio of their number to the total number of 

interarrival times, which was called zero ratio. Both of those parameters (i.e., lambda and zero ratio) were 

determined for the real rainfall datasets and the randomly generated synthetic datasets. Percent errors were then 

calculated for the two parameters. This was done by programming using Python. The code is shown in 

Appendix A. 
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2.2.2. Amounts model 

After knowing whether a day is dry or wet using the occurrence model, the amounts of rainfall precipitation (i.e., 

rainfall precipitation depths) are estimated using the amounts model. Thus, the amounts model is only concerned 

with non-zero rainfall precipitation days (i.e., wet days). Previous studies show that it is acceptable to assume 

that rainfall precipitation depths for wet days follow the gamma distribution. Gamma distribution has two 

parameters: alpha and beta, which can be calculated as follows. 

𝛼 = (
𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)

2

 (9) 

𝛽 =
(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)2

𝑚𝑒𝑎𝑛
 (10) 

These two parameters were calculated for both the original data and the randomly generated synthetic data, and 

percent errors were then calculated. This was done by programming using Python. The code is shown in 

Appendix A. 

2.3. Model validation 

2.3.1. Occurrence model 

2.3.1.1. Graphical method 

For visual comparison, a graphical method was used for the validation of the occurrence model for Mafraq 

Airport station. This was done by imposing the histogram of the interarrival times of the synthetic data on the 

histogram of those of the observed data. The histogram bars of the observed data are in red, while those of the 

synthetic data are in blue; thus, the areas where the two histograms overlap are in violet. 

2.3.1.2. Percent errors 

After calculating the exponential distribution parameters (i.e., lambda and zero ratio) of the interarrival times of 

the observed data, these parameters were calculated also for the synthetic data. However, the synthetic data 

parameters are not shown in the results. Instead, the percent errors of the synthetic data parameters based on the 

observed data parameters are calculated and shown in the results table. 

2.3.2. Amounts model 

2.3.2.1. Graphical method 

For visual comparison, a graphical method was used for the validation of the amounts model for Mafraq Airport 

station. This was done by imposing the histogram of the non-zero daily rainfall amounts of the synthetic data on 

the histogram of those of the observed data. The histogram bars of the observed data are in red, while those of 
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the synthetic data are in blue; thus, the areas where the two histograms overlap are in violet. 

2.3.2.2. Percent errors 

After calculating the gamma distribution parameters (i.e., alpha and beta) of the non-zero daily rainfall amounts 

of the observed data, these parameters were calculated also for the synthetic data. However, the synthetic data 

parameters are not shown in the results. Instead, the percent errors of the synthetic data parameters based on the 

observed data parameters are calculated and shown in the results table. 

3. Results and Discussion 

3.1. Goodness-of-fit 

Goodness-of-fit was tested using the well-known chi-square test for Mafraq Airport station. Interarrival times 

were successfully fitted to the exponential distribution, and non-zero daily rainfall amounts to the gamma 

distribution. Results of chi-square tests for interarrival times and non-zero depths for Mafraq Airport station – 

October are shown in Tables 2–3. 

Table 2: Chi-square test for the occurrence model of Mafraq Airport station – October (fitting interarrival times 

to one-parameter exponential distribution) (1/mean = 0.046062407; 1/standard deviation = 0.043082865; 𝜆 = 

0.044572636; 𝑋2 = 12.99295; 𝜒2 = 23.68; 𝑋2 ≤ 𝜒2 ⇒ H0 accepted; Zero frequency = 29; Zero ratio = 

0.318681319) 

𝑘 𝑓 𝑝 𝐹 (𝑓 − 𝐹)2 𝐹⁄  

2 8 0.085287 5.287814 1.391114 

4 6 0.078013 4.83683 0.279721 

6 2 0.07136 4.42431 1.328406 

8 5 0.065274 4.046972 0.22443 

10 5 0.059707 3.701817 0.455257 

12 2 0.054615 3.386099 0.567399 

14 3 0.049957 3.097308 0.003057 

16 6 0.045696 2.833147 3.539866 

18 2 0.041799 2.591515 0.135014 

20 3 0.038234 2.370492 0.167172 

22 1 0.034973 2.168319 0.629506 

24 2 0.03199 1.983389 0.000139 

26 3 0.029262 1.814231 0.775011 

28 0 0.026766 1.6595 1.6595 

30 0 0.024483 1.517966 1.517966 

More 14 0.262585 16.28029 0.319388 

Sum 62 1 62 12.99295 
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Table 3: Chi-square test for the amounts model of Mafraq Airport station – October (fitting non-zero data points 

to two-parameter gamma distribution) (mean = 3.031521739; standard deviation = 3.458352503; 𝛼 = 

0.768392041; 𝛽 = 3.945279982; 𝑋2 = 3.811961161; 𝜒2 = 15.51; 𝑋2 ≤ 𝜒2 ⇒ H0 accepted) 

𝑘 𝑓 𝑝 𝐹 (𝑓 − 𝐹)2 𝐹⁄  

0.5 22 0.209742 19.29624 0.378847 

1 9 0.129102 11.87742 0.697084 

1.5 10 0.100616 9.256651 0.059694 

2 8 0.081893 7.534124 0.028808 

2.5 7 0.068028 6.258608 0.087825 

3 7 0.057192 5.26169 0.574288 

3.5 4 0.048464 4.458652 0.047181 

4 2 0.041298 3.799422 0.852214 

4.5 2 0.03534 3.251255 0.481549 

5 4 0.030339 2.791233 0.523467 

More 17 0.197986 18.2147 0.081006 

Sum 92 1 92 3.811961 

3.2. Model calibration 

3.2.1. Occurrence model 

Values of lambda and zero ratio for the observed daily rainfall data are shown in Table 4. 

3.2.2. Amounts model 

Values of alpha and beta for the observed daily rainfall data are shown in Table 4. 

3.3. Model validation 

3.3.1. Occurrence model 

3.3.1.1. Graphical method 

A graphical representation for original and synthetic data of Mafraq Airport station is provided in the histograms 

shown in Figure 2. Visual comparison shows a good similarity between observed and synthetic daily rainfall 

data except for May due to the lack of the observed records. 

3.3.1.2. Percent errors 

Percent errors for the exponential distribution parameters (i.e., lambda and zero ratio) were calculated for the 

interarrival times of the synthetic daily rainfall data. All the percent errors for lambda and zero ratio are less 

than 10%, which is considered acceptable. 
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3.3.2. Amounts model 

3.3.2.1. Graphical method 

A graphical illustration for both non-zero observed data and non-zero synthetic data for Mafraq Airport station 

is shown as histograms in Figure 3. Visual comparison shows a good similarity between observed and synthetic 

daily rainfall data. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 2: Histogram illustration of observed and synthetic interarrival times for Mafraq Airport station, in (a) 

October (b) November (c) December (d) January (e) February (f) March (g) April (h) May (it: observed 

interarrival times; itr: synthetic (random) interarrival times)
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3 : Histogram illustration of observed and synthetic non-zero rainfall depths for Mafraq Airport station 

(a) October (b) November (c) December (d) January (e) February (f) March (g) April (h) May (nz: observed 

non-zero rainfall depths; nzr: synthetic (random) non-zero rainfall depths)
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3.3.2.2. Percent errors 

Percent errors for the exponential distribution parameters (i.e., lambda and zero ratio) were calculated for the 

interarrival times of the synthetic daily rainfall data. All the percent errors for lambda and zero ratio are less 

than 10%, which is considered acceptable. 

Table 4: Distributional parameters for the observed daily rainfall data 

Station Name Parameter  Oct Nov Dec Jan Feb Mar Apr May 

Mafraq Airport 

λ 0.044 0.083 0.135 0.193 0.176 0.112 0.05 0.022 

z 0.319 0.372 0.463 0.452 0.522 0.412 0.346 0.222 

α 0.76 0.648 0.465 0.526 0.647 0.73 0.689 0.339 

β 0.251 0.127 0.102 0.11 0.15 0.146 0.216 0.168 

Turra 

λ 0.034 0.076 0.121 0.137 0.14 0.093 0.051 0.015 

z 0.25 0.364 0.429 0.496 0.489 0.485 0.435 0.077 

α 0.763 0.922 0.839 0.766 0.724 0.766 0.794 1.109 

β 0.155 0.119 0.099 0.094 0.09 0.09 0.128 0.366 

Baqura 

λ 0.048 0.11 0.146 0.19 0.153 0.115 0.052 0.015 

z 0.379 0.496 0.551 0.55 0.59 0.536 0.41 0.276 

α 0.288 0.655 0.636 0.519 0.615 0.778 0.727 0.5 

β 0.052 0.08 0.068 0.057 0.075 0.11 0.134 0.075 

Irbid 

λ 0.057 0.113 0.185 0.213 0.198 0.149 0.083 0.027 

z 0.399 0.487 0.536 0.583 0.599 0.561 0.469 0.186 

α 0.615 0.647 0.555 0.62 0.57 0.719 0.54 0.388 

β 0.134 0.076 0.056 0.064 0.056 0.075 0.089 0.093 

Ras Muneif 

λ 0.064 0.113 0.17 0.196 0.188 0.157 0.086 0.023 

z 0.406 0.506 0.545 0.596 0.594 0.547 0.428 0.277 

α 0.53 0.611 0.647 0.628 0.608 0.611 0.506 0.49 

β 0.098 0.068 0.06 0.057 0.053 0.057 0.071 0.079 

Deir Alla 

λ 0.045 0.102 0.155 0.214 0.178 0.14 0.061 0.022 

z 0.352 0.453 0.513 0.556 0.559 0.513 0.415 0.222 

α 0.606 0.471 0.565 0.677 0.631 0.631 0.536 0.557 

β 0.163 0.064 0.079 0.096 0.096 0.102 0.094 0.167 

Zarqa 

λ 0.02 0.048 0.074 0.098 0.1 0.066 0.032 0.012 

z 0.194 0.356 0.372 0.408 0.376 0.387 0.211 0.186 

α 0.777 0.718 0.484 0.668 0.649 0.812 0.465 0.607 

β 0.21 0.133 0.086 0.126 0.117 0.165 0.131 0.166 

Ruseifa 

λ 0.017 0.048 0.079 0.096 0.098 0.066 0.025 0.009 

z 0.241 0.307 0.376 0.423 0.374 0.402 0.318 0.241 

α 0.92 0.689 0.637 0.719 0.744 0.733 1.053 0.669 
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β 0.188 0.119 0.099 0.12 0.117 0.113 0.241 0.202 

Jubeiha 

λ 0.031 0.088 0.143 0.184 0.173 0.133 0.061 0.016 

z 0.271 0.474 0.498 0.541 0.543 0.505 0.406 0.323 

α 0.402 0.512 0.598 0.648 0.578 0.736 0.503 0.729 

β 0.06 0.051 0.047 0.049 0.043 0.06 0.067 0.115 

Amman Airport 

λ 0.041 0.102 0.148 0.193 0.192 0.143 0.072 0.028 

z 0.309 0.462 0.541 0.578 0.601 0.554 0.412 0.25 

α 0.366 0.404 0.432 0.515 0.484 0.509 0.378 0.378 

β 0.111 0.071 0.069 0.078 0.075 0.084 0.107 0.139 

Ain Ghazal 

λ 0.024 0.037 0.12 0.158 0.165 0.113 0.068 0.044 

z 0 0.529 0.529 0.526 0.594 0.522 0.364 0.091 

α 1.01 1.481 0.462 0.457 0.542 0.583 0.834 1.349 

β 0.43 0.34 0.053 0.052 0.066 0.114 0.353 0.349 

Baq'a 

λ 0.037 0.088 0.142 0.169 0.167 0.115 0.053 0.019 

z 0.302 0.446 0.501 0.535 0.576 0.532 0.395 0.3 

α 0.866 0.446 0.49 0.624 0.597 0.735 0.684 0.885 

β 0.182 0.053 0.054 0.064 0.066 0.073 0.149 0.246 

Khaldiya 

λ 0.029 0.06 0.097 0.142 0.142 0.088 0.026 0.017 

z 0.172 0.338 0.357 0.349 0.383 0.278 0.281 0.167 

α 1.107 0.763 0.667 0.514 0.639 0.786 0.624 0.382 

β 0.38 0.166 0.11 0.09 0.124 0.165 0.206 0.092 

King Talal Dam 

λ 0.026 0.066 0.099 0.103 0.12 0.077 0.039 0.01 

z 0.283 0.473 0.492 0.545 0.558 0.518 0.324 0.318 

α 0.563 0.733 0.713 1.018 0.792 0.924 1.308 2.519 

β 0.107 0.098 0.085 0.112 0.1 0.106 0.311 0.514 

Hashimiya 

λ 0.029 0.074 0.123 0.129 0.147 0.089 0.042 0.016 

z 0.2 0.404 0.39 0.41 0.467 0.377 0.182 0.125 

α 1.305 0.813 0.712 0.694 0.832 0.72 0.635 1.231 

β 0.481 0.19 0.162 0.119 0.173 0.184 0.186 0.424 

Wadi Dhuleil 

λ 0.024 0.052 0.077 0.104 0.095 0.07 0.027 0.01 

z 0.288 0.388 0.403 0.449 0.483 0.413 0.338 0.25 

α 0.81 0.72 0.583 0.723 0.527 0.608 0.924 0.907 

β 0.22 0.153 0.128 0.154 0.125 0.142 0.329 0.548 

Um El-Jumal 

λ 0.03 0.077 0.125 0.154 0.141 0.098 0.035 0.016 

z 0.167 0.35 0.42 0.478 0.497 0.44 0.369 0.074 

α 0.45 0.799 0.79 0.715 0.83 0.747 0.742 0.603 

β 0.125 0.179 0.205 0.175 0.213 0.185 0.241 0.238 

Khirebit Es Samra 

λ 0.042 0.074 0.134 0.164 0.174 0.072 0.03 0.009 

z 0.147 0.326 0.4 0.457 0.468 0.389 0.103 0.111 

α 1.191 0.876 0.754 1.005 0.828 0.943 1.549 2.072 
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β 0.472 0.181 0.182 0.199 0.172 0.249 0.601 0.786 

Salt 

λ 0.026 0.094 0.153 0.185 0.186 0.143 0.066 0.019 

z 0.365 0.399 0.475 0.519 0.541 0.488 0.352 0.292 

α 0.55 0.638 0.698 0.838 0.76 0.797 0.669 0.94 

β 0.069 0.044 0.041 0.044 0.047 0.051 0.068 0.124 

Wadi Es-Sir 

λ 0.032 0.079 0.151 0.182 0.194 0.124 0.062 0.016 

z 0.364 0.469 0.512 0.511 0.494 0.494 0.416 0.143 

α 0.567 0.552 0.582 0.732 0.64 0.776 0.479 0.88 

β 0.086 0.046 0.041 0.045 0.044 0.054 0.052 0.118 

Na'ur 

λ 0.027 0.078 0.148 0.174 0.178 0.116 0.053 0.015 

z 0.294 0.443 0.459 0.488 0.522 0.495 0.381 0.22 

α 0.712 0.565 0.588 0.626 0.689 0.822 0.513 0.657 

β 0.08 0.046 0.045 0.043 0.053 0.065 0.061 0.138 

Madaba 

λ 0.022 0.076 0.124 0.164 0.175 0.117 0.044 0.014 

z 0.224 0.413 0.466 0.48 0.454 0.458 0.355 0.175 

α 1.12 0.49 0.559 0.786 0.629 0.794 0.781 0.703 

β 0.228 0.052 0.053 0.075 0.055 0.076 0.094 0.098 

Mushaqqar 

λ 0.04 0.073 0.132 0.194 0.188 0.093 0.03 0.011 

z 0.25 0.404 0.478 0.532 0.569 0.493 0.206 0.25 

α 1.146 0.654 0.484 0.724 0.725 0.546 0.545 0.946 

β 0.19 0.066 0.045 0.069 0.067 0.055 0.065 0.177 

Sahab 

λ 0.022 0.056 0.088 0.122 0.119 0.075 0.032 0.005 

z 0.22 0.4 0.382 0.445 0.439 0.374 0.346 0.25 

α 0.792 0.588 0.593 0.735 0.702 0.695 0.547 0.648 

β 0.143 0.083 0.058 0.076 0.07 0.06 0.069 0.065 

Yaduda 

λ 0.005 0.05 0.108 0.115 0.133 0.093 0.047 0.015 

z 0.333 0.455 0.461 0.48 0.467 0.456 0.417 0.167 

α 5.765 0.472 0.671 0.709 1.103 1.069 0.942 3.185 

β 0.997 0.048 0.055 0.067 0.099 0.084 0.09 0.622 

Jiza 

λ 0.014 0.042 0.066 0.103 0.084 0.062 0.021 0.005 

z 0.267 0.286 0.425 0.383 0.384 0.339 0.268 0 

α 0.87 0.649 0.776 0.831 0.731 0.932 0.596 0.862 

β 0.254 0.087 0.103 0.115 0.095 0.109 0.083 0.15 

Rabba 

λ 0.021 0.075 0.118 0.163 0.154 0.109 0.041 0.007 

z 0.345 0.438 0.492 0.514 0.533 0.464 0.397 0.263 

α 0.886 0.491 0.49 0.594 0.544 0.597 0.405 0.449 

β 0.184 0.06 0.05 0.057 0.056 0.058 0.044 0.079 

Ghores-Safi 

λ 0.011 0.02 0.031 0.044 0.043 0.027 0.016 0.004 

z 0.24 0.255 0.316 0.347 0.346 0.337 0.237 0.167 

α 0.27 0.602 0.539 0.667 0.706 0.518 0.405 0.351 
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β 0.057 0.161 0.132 0.21 0.234 0.148 0.118 0.047 

Hasa 

λ 0.014 0.036 0.04 0.057 0.05 0.051 0.014 0.005 

z 0.429 0.267 0.294 0.365 0.338 0.383 0.208 0.143 

α 0.46 0.657 0.353 0.698 0.533 0.837 0.942 1.098 

β 0.128 0.17 0.109 0.218 0.201 0.299 0.322 0.325 

Shaubak 

λ 0.035 0.065 0.113 0.162 0.155 0.098 0.044 0.014 

z 0.299 0.36 0.451 0.492 0.416 0.454 0.402 0.185 

α 0.562 0.375 0.458 0.506 0.592 0.444 0.453 0.465 

β 0.16 0.059 0.049 0.054 0.063 0.046 0.06 0.076 

Aqaba 

λ 0.008 0.018 0.03 0.038 0.031 0.026 0.018 0.003 

z 0.185 0.17 0.346 0.185 0.218 0.171 0.133 0.2 

α 0.452 0.384 0.21 0.286 0.223 0.605 0.292 0.324 

β 0.148 0.11 0.048 0.092 0.056 0.205 0.069 0.067 

Ram 

λ 0.006 0.009 0.014 0.022 0.017 0.014 0.009 0.002 

z 0.143 0.214 0.19 0.357 0.217 0.304 0.231 0.333 

α 0.673 0.945 1.056 1.085 0.858 0.588 2.394 0.681 

β 0.379 0.204 0.322 0.268 0.207 0.076 0.663 0.194 

H5 

λ 0.023 0.047 0.077 0.094 0.117 0.071 0.041 0.016 

z 0.19 0.34 0.39 0.395 0.381 0.33 0.27 0.22 

α 0.515 0.392 0.65 0.553 0.459 0.433 0.482 1.281 

β 0.135 0.094 0.181 0.193 0.149 0.149 0.15 0.387 

Azraq Police Post 

λ 0.01 0.016 0.022 0.024 0.015 0.017 0.009 0.005 

z 0.2 0.222 0.286 0.271 0.24 0.4 0.083 0 

α 0.711 1.018 1.159 0.678 1.759 1.344 0.482 1.756 

β 0.187 0.197 0.208 0.165 0.532 0.365 0.095 0.213 

Azraq Evap. Station 

λ 0.022 0.042 0.066 0.106 0.096 0.061 0.026 0.012 

z 0.094 0.203 0.359 0.377 0.288 0.268 0.265 0.238 

α 0.227 0.55 0.482 0.618 0.4 0.464 0.502 0.551 

β 0.051 0.159 0.14 0.237 0.156 0.136 0.152 0.151 

Jafr Police Post 

λ 0.008 0.015 0.015 0.014 0.023 0.014 0.013 0.003 

z 0.167 0.212 0.162 0.088 0.069 0.1 0.174 0 

α 0.633 0.828 0.97 1.169 0.507 1.285 0.647 0.752 

β 0.158 0.122 0.197 0.3 0.088 0.257 0.119 0.198 

Ma'an 

λ 0.015 0.027 0.045 0.067 0.065 0.05 0.022 0.008 

z 0.235 0.233 0.246 0.321 0.24 0.27 0.175 0.222 

α 0.34 0.447 0.423 0.663 0.663 0.524 1 1.398 

β 0.073 0.115 0.126 0.253 0.191 0.138 0.265 0.393 

Jafr Evap. Station 

λ 0.007 0.007 0.01 0.011 0.013 0.009 0.041 0.002 

z 0.25 0.211 0.25 0.314 0.188 0.259 0.167 0.2 

α 0.573 0.408 0.929 0.353 0.198 0.559 0.722 2.014 
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β 0.131 0.088 0.717 0.077 0.085 0.156 0.382 0.666 

H4 

λ 0.029 0.057 0.083 0.098 0.11 0.073 0.055 0.021 

z 0.262 0.253 0.281 0.349 0.29 0.322 0.312 0.354 

α 0.418 0.454 0.577 0.628 0.475 0.593 0.416 0.607 

β 0.121 0.109 0.176 0.221 0.144 0.186 0.101 0.208 

4. Conclusions and Recommendations 

4.1. Conclusions 

For all the stations included in this study, interarrival times of daily rainfall data can be represented using the 

one-parameter exponential distribution, except for zero values that can be represented using a ratio between the 

number of zeros and the total number of values called zero ratio. For all the stations included in this study, non-

zero daily rainfall amounts can be represented using the two-parameter gamma distribution. 

Goodness-of-fit for one of the stations was tested using chi-square test. Interarrival times were successfully 

fitted to the exponential distribution, and non-zero daily rainfall amounts to the gamma distribution. 

4.2. Recommendations for Future Studies 

 Markov chain is recommended to use in the calibration stage of the occurrence model. 

 Nonparametric methods (e.g., kernel and nearest-neighbor estimators) are recommended to use instead 

of the parametric method of assuming probability distributions beforehand. 

 Nonparametric methods for data resampling are recommended to use before studying the data. 

 Spatial correlations of daily rainfall data are recommended to consider among the meteorological 

stations. 
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