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Abstract 

The application of machine learning solutions in software engineering tools and processes can bring significant 

benefits to software engineering processes, as well as to processes results analysis. There are few primary, 

secondary, and tertiary studies referring to machine learning applications in software engineering. The apparent 

scarcity of this type of research makes it difficult to develop specific solutions for software engineering areas 

and processes. Thus, it is necessary to investigate and understand how the use of machine learning in software 

engineering is reported in the literature. This work aims to carry out a systematic literature review on the 

machine learning approach in software engineering. The search strategy resulted in 1725 articles, of which 54 

articles were about empirical studies. The studies were grouped into four themes: the main machine learning 

algorithms and/or frameworks applied in software engineering; the software engineering activities in which 

these algorithms and/or machine learning frameworks are applied; the main types of application of these 

algorithms and/or frameworks; and the main results obtained with the application of these algorithms and/or 

frameworks. The results obtained indicate that the following algorithms are used: Support Vector Machine, 

Random Forest, Decision Tree and Naive Bayes and applied mainly in software testing and planning activities. 

Defect prediction and effort estimation are the main types of application of these algorithms and improvement in 

performance and accuracy of defect prediction and cost reduction are the main results obtained with the 

application of these algorithms in software engineering. 

Keywords: Machine Learning; Software Engineering; Software Engineering Processes; Software Engineering 

Activities; Machine Learning Algorithms. 
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1. Introduction 

Machine learning (MA) is seen by some authors as a statistical technique overlap with the following areas: 

applied mathematics, information engineering and biological computing [1]. According to Clifton and his 

colleagues  (2013), the Machine learning objective is to identify patterns in the data and then perform inferences 

using these identified patterns. 

In recent years, many innovations have been created using machine learning: autonomous vehicles, voice 

recognition, data mining, biometrics, among other solutions. As a result, the demand for intelligent systems had 

a relevant growth in the market and in the scientific field [2]. These systems use implicit (not previously 

programmed) algorithms for pattern detection that involve various other disciplines, e.g. calculus, linear algebra, 

statistics, probability, information theory and neurobiology. These disciplines are used in intelligent algorithms 

build and are part of the machine learning area. 

According to Mitchell (1997), machine learning occurs when the computer learns by improving the performance 

of a class of tasks, which are measured statistically. The process of learning a computer program involves three 

steps. The first step is task classes definition that will be learned. The second step is the measurements definition 

that will be performed to identify whether there was an improvement in the performance of each task by the 

computer. The third stage is the set of trainings to obtain learning and, consequently, improve performance. 

Thus, the implementation of machine learning involves a set of tasks, performance measurement of these tasks 

and a set of training to obtain experience in performing these tasks [2].  

The software engineering use in the development of information systems has brought many benefits to 

companies [3]. However, only a few areas of software engineering have benefited from using machine learning 

approaches in their tools and processes [4,6]. 

In the academic setting, systematic reviews related to the ML application in software engineering have the main 

focus on testing and defect prediction activities, as well as there are few secondary studies characterizing the 

approaches of these applications in other areas of software engineering [7]. Therefore, it is necessary to 

investigate machine learning approaches in software engineering, in general aspects, to understand how the 

machine learning use in the software development process is reported in the literature. 

This work has as general objective a systematic literature review on the machine learning approach in software 

engineering. To achieve the general objective of this work, it is necessary to reach the following specific 

objectives: collect, group, synthesize and analyze primary studies relevant to the characterization of ML 

application approaches in software engineering during the period from 2009 to 2021.  

With the dissemination of the results obtained in this study, it will be possible to understand its importance for 

the area of software engineering, characterizing the state of art of the machine learning approach in software 

engineering and identifying research gaps on this topic. With the characterization of these research gaps, it will 

be possible to develop new research, experiments and more specific primary studies to fill the spaces identified 

in this work. But it will also be possible to develop more specific machine learning solutions in software 
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engineering. With the development of machine learning solutions in software engineering, we will be able to 

obtain the following benefits: cost reduction with smarter tools use, improvement in effort estimation of 

development teams, more efficient prediction of codes errors, reduction of costs in software testing processes 

and improvement in the application of design patterns with cognitive analysis tools. 

This work is organized from this section. In section 2, Related Work, works that present a literature review on 

machine learning use in software engineering will be discussed. In section 3, the methodology used in this work 

will be presented. In section 4, the process of selecting studies and extracting data will be presented. In section 

5, the results obtained will be presented. Finally, in section 6, the final considerations of this work are presented. 

2.  Related Work 

MALHOTRA (2015) performed a systematic literature review (RSL) to identify machine learning application in 

predicting failures in the development process. This study was carried out with data extracted during the period 

from 1991 to 2013. The study evaluated the ability of machine learning techniques to predict software failures. 

Malhotra also compared the performance of the techniques found that used machine learning with other 

techniques using statistical inference. The result of the study was that machine learning use in software failures 

prediction contributes substantially to codes errors reduction. Furthermore, the study came to the conclusion that 

the application of machine learning to error prediction still needs further research [8]. 

WEN and his colleagues  (2012) carried out a literature review to investigate the prediction of efforts required to 

develop a software, using machine learning techniques to improve the accuracy of the estimates. For this study, 

data were extracted from the period 1991 to 2010. The conclusion of this study was that the application of 

machine learning for effort estimation in software development is promising. However, this type of study for 

software engineering still has a limited number of primary studies [10]. 

ALSOLAI and ROPER (2019) developed a literature review to investigate maintainability prediction of systems 

built with the object-oriented paradigm, using machine learning techniques. In this review, 56 works from the 

period 1991 to 2018 were retrieved [12]. 

AFZAL and TORKAR (2011) conducted a literature review to investigate the use of genetic programming 

algorithms to predict code errors and to improve software quality. For this study, papers between 1995 and 2008 

were considered. 23 relevant primary studies were found, which confirmed that the use of genetic programming 

algorithms can improve code errors prediction, as well as help to improve the quality of software [13]. From the 

related works discussed above, it can be stated that there is a lack of works that present systematic literature 

reviews to characterize the machine learning approach in software engineering. Thus, in this work, relevant 

primary studies identified in academic literature that identify the machine learning approach in software 

engineering will be extracted, categorized, and synthesized. 

3. Methodology 

A Systematic Review Protocol was elaborated according to the guidelines of [14]. In this protocol, the work 
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title, the research context (background), the reason for carrying out the studies, the main research question, the 

secondary questions, search process definition and the search string are evaluated. Furthermore, this protocol 

also includes the primary studies selection process, the inclusion and exclusion criteria, the primary studies 

process of assessing the quality, the data extraction process, the synthesis process, and study limitations. The 

protocol developed was also evaluated by two experts in the field of software engineering research (See 

Appendix B). 

Four research questions were created, the last three being derived from the first. These research questions have 

the following objectives: to characterize the main machine learning algorithms and/or frameworks applied in 

software engineering; identify the main software engineering activities in which these algorithms and/or 

frameworks are applied; describe the main types of application of these algorithms and/or frameworks in 

software engineering and characterize the main results and benefits of applying these algorithms and/or 

frameworks within software engineering. The research questions are listed in Table 01 below. 

Table 1: Research Questions. 

Research Questions Description 

Research Question 01 
What are the main machine learning algorithms and/or frameworks used in 

software engineering? 

Research Question 02 
What are the software engineering activities in which machine learning 

algorithms and/or frameworks are applied? 

Research Question 03 
What are the main application types of machine learning algorithms and/or 

frameworks in software engineering? 

Research Questions 04 
What are the main results achieved of applying machine learning algorithms 

and/or frameworks in software engineering? 

  

Regarding the inclusion and exclusion criteria, those primary studies that presented machine learning 

approaches and applications in software engineering, including qualitative and quantitative primary studies, 

were considered eligible. 

Papers in English and Portuguese published during the period 2009 to 2021 were considered. Primary papers 

that did not address the main objective of this work were excluded, as were papers that failed the quality 

assessment process (described in the next paragraphs), case studies and papers published outside the specified 

period. 

Regarding the research repositories considered, the following research libraries were chosen: 

 ACM Digital Library 

 IEEE Xplore 

 ScienceDirect – Elsevier 

 SpringerLink 

 Wiley Inter Science Journal Finder 

 Google Scholar 
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These libraries were selected for being repositories of works from the academic computing community. Studies 

from manual searches carried out in academic journals were also considered, as well as studies extracted by the 

Snowballing technique [15]. 

The papers selection process was divided according to the phases specified in Figure 01. 

 

Figure 1: Systematic Review papers selection phases. 

The search process in the repositories used the descriptors below to create the search string: 

 (1) machine learning AND software engineering 

 (2) artificial Intelligence AND software engineering 

 (3) reinforcement learning AND software engineering 

 (4) Deep learning AND software engineering 

 (5) statistical learning AND software engineering 

 (6) (machine learning OR learning) AND (test OR requirement OR process OR software OR software 

engineering OR development OR software fault OR software planning OR software design OR software 

quality). 

Phase 01

Search in research 

repositories

Phase 02

Removal of Duplicate 

Studies

Phase 03

Exclusion of studies by title

Phase 04

Exclusion of studies based 

on abstract

Phase 05

Application of quality 

criteria



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2022)Volume 85, No1, pp 370- 396 

375 
 

After defining the descriptors above, these terms were combined using the Boolean operator “OR” to form a 

search string that, in turn, returned papers that at least included one of the terms specified in the search string. 

Below is the search string that was used: 

1 OR 2 OR 3 OR 4 OR 5 OR 6 

During the search process, abstracts, magazine editorials, interviews, letters, blog discussions, documents from 

workshops and posters were not considered. The retrieved papers were stored in Elsevier's Mendeley Reference 

Manager (https://www.mendeley.com). Mendeley was also used to remove retrieved papers more than once in 

the search process. After the analysis in Mendeley, the articles were imported into a spreadsheet in MS-Excel 

with the respective metadata (authors, citations, abstracts, publication data). The R language (https://www.r-

project.org) was used in the process of grouping the results, in the use of statistical functions and in the 

generation of graphs. 

In phase 02 of this literature review, the titles were analyzed to remove papers that are not related to the main 

theme of this work. In phase 03, an analysis was performed on the abstracts to select relevant papers. In phase 

04, studies qualitative analysis was carried out using the previously defined quality criteria. The quality criteria 

considered in this work evaluated the research methods used in the studies, following the guidance of [14], [16]. 

In addition, the quality of the content presented in the papers was evaluated, as well as the studies relevance to 

the research. The quality assessment criteria are presented below: 

 The evaluated study reports empirical work or only lessons learned, based on expert opinions. 

 The answers to the research questions are clear in the paper. 

 There is a clear description of the context in which the paper was applied or where the research was carried 

out. 

 The research methods used in the paper are in accordance with academically applied methodologies. 

 There is a clear description of the methods used in analyzing the results. 

 The evaluated study provides value to the research. 

The quality criteria answers, specified above, were mapped into numerical values to carry out results 

quantitative analysis. In the analysis process, as well as in the synthesis of results, the data that were stored in 

Excel were exported using the R language to perform the statistical analyses, using inferential and descriptive 

methods. Meta-analysis methods were also used as recommended by [14], [16]. The statistical functions used 

were mean, standard deviation, Kappa coefficient and correlation coefficient (when necessary). The analyzes 

were performed in the R Studio environment (R-Language Code Development Environment – Available: 

https://www.rstudio.com). The research questions were answered with the results obtained from the results 

synthesis process. 

4. Process Papers Selection and Data Extraction 

The article selection process was applied from the phases illustrated in Figure 1, presented in Section 3 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2022)Volume 85, No1, pp 370- 396 

376 
 

(Methodology). Figure 2 illustrates the quantitative result obtained from the article selection process in each 

search repository. 

 

Figure 1: Paper selection phases. 

5. Results 

There has been an increase in publications in recent years, confirming the work of [17], who made similar 

analysis related to machine learning application in software testing. However, in 2020 and 2021, there was a 

significant drop compared to 2018 and 2019. This drop may be associated with the impacts of the Covid-19 

Pandemic, which reduced the number of conferences due to sanitary restrictions. Figure 03 shows the number of 

publications per year. 

ACM:  327

IEEE Xplore:  893

ScienceDirect: 202

SpringerLink: 196

Google Scholar: 107 

Total: 1725

ACM: 275

IEEE Xplore: 802

ScienceDirect: 201

SpringerLink: 184

Google Scholar: 104

Total: 1566

ACM: 26

IEEE Xplore: 235

ScienceDirect: 11

SpringerLink: 8

Google Scholar: 3

Total:283

ACM: 9

IEEE Xplore: 174

ScienceDirect: 7

SpringerLink: 1

Google Scholar: 2

Total:193

ACM: 1

IEEE Xplore: 41

ScienceDirect: 5

SpringerLink: 1

Google Scholar: 0

SnowBalling (IET): 1

Não localizados: 20

Total: 53

Phase 01

Search in research 

repositories

Phase 02

Removal of Duplicate 

Studies

Phase 03

Exclusion of studies by title

Phase 04

Exclusion of studies based 

on abstract

Phase 05

Application of quality 

criteria
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Figure 2: Papers distribution by publication year. 

Based on the methodology used by Durelli (2019), descriptive statistics and frequency analysis functions were 

used to analyze the answers to the research questions. The frequency function is shown in the histograms of 

Figures 4, 5, 6, 7 and 8 and corresponds to the number of occurrences by the total of them, however, classified 

by the highest occurrence of the results (i,e, mode). To analyze research questions answers, the same approach 

applied in the works [18] and [19] was used, which consists of presenting the results indexed by research 

question. Below are the results obtained for each research question. 

5.1. What are the main machine learning algorithms and/or frameworks used in software engineering? 

This research question purpose is characterizing the main machine learning algorithms and/or frameworks 

applied in software engineering processes or activities.  

As can be seen in Figure 4, the “Support Vector Machine” algorithm was the most applied in software 

engineering processes and activities (17.81% of the articles), followed by “Random Forest” (12.33%), “Decision 

Tree” (8.22%) and “Naive Bayes (6.85%).  

The Weka Framework, developed in Java by the Waikato University in New Zealand, was identified in 5.48% 

of the analyzed articles, while the “K-Nearest NeighBor” and “Linear Regression” algorithms had the same 

results, i.e. 4.11%. As for the algorithms based on neural networks, the “Artificial Neural Network”, 

“Feedforward Neural Network”, “Multi-Layer Perceptron” and “Radial Basis Function Neural Network” were 

used in the same number of works (2.74%). The algorithms “Back Propagation”, “Convolutional Neural 

Network”, “Extreme Learning Machine”, “Fourier Algorithm”, “Fuzzy Learning”, “Genetic Algorithm”, 
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“GFsSDAEsTSE Algorithm”, “Greedy Forward Selection”, “K-Star Algorithm ”, MATLAB ANN FrameWork, 

Daikon FrameWork, “Multi Objective Genetic Algorithm”, “Probabilistic Reasoning Algorithm”, “Recurrent 

Neural Network Algorithm”, “Reinforcement Learning Algorithm”, “Single-Layer Perceptron Algorithm”, 

“Support Vector Regression” and “ TF-IDF Weighting Algorithm” were identified in only 1 article, i.e. 1.37% 

of the total.  

 

Figure 3: Papers distribution in relation to algorithms or frameworks. 

Table 2 shows the distribution of papers by algorithms and Appendix A shows the list of papers found in the 

literature review. It is observed that in some works there was the occurrence of primary studies that evaluated 

two or more algorithms, therefore, the count of total occurrences of papers is higher than the 53 papers retrieved 

in the literature review. This fact is repeated in the other tables of this analysis.  

The Support Vector Machines algorithm is used in classification or regression problems. Furthermore, it is the 

most available algorithm in “off-the-shelf”, that is, it can be found in several frameworks on the market [20]. 

The Random Forest Algorithm is similar to Decision Tree, however with the more diverse K-tree to reduce the 

variance, it is also used in the classification or regression problems. The Decision Tree algorithm is most used in 

classifying instances from the root to the last layers of each node (a node specifies tests that are performed on 

attributes of the instance). The Naive Bayes algorithm is widely used in text classification and uses the 

probability theory of the Bayes Theorem [21]. The Weka Framework is a tool that contains a collection of 

machine learning algorithms (Decision Tree, K-Nearest Neighbors, Linear Regression and Naive Bayas) being 
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used mainly in data mining [22]. 

Table 2: Papers distribution by algorithms. 

 

The algorithms Support Vector Machine, Weka Framework, Random Forest, Naive Bayes and Decision Tree 

were the most reported in selected articles. 

5.2. What are the software engineering activities in which machine learning algorithms and/or frameworks 

are applied? 

The Research Question 02 goal is to identify in which software engineering activities the algorithms identified 

in Section 5.1 are applied. Figure 2 illustrates that 56.52% of papers reported using machine learning algorithms 

in software testing activities. It is possible to identify that 26.09% of reported papers their use in software 

planning activities and 7.25% in software project activities. The use of machine learning algorithms in software 

requirements activities was reported by 4.35%. Only 2.90% indicated the use of this category of algorithms in 

software development activities and 1.45% in all software quality processes. 

Algorithms

Artificial Neural Network Algorithm 15, 16, 

BackPropagation Algorithm 29, 

Convolutional Neural Network 34, 

Daikon Tool 36, 

Decision Tree Algorithm 2, 14, 33, 42, 47, 50, 

Deep Neural Network (DNN) 51, 

Extreme Learning Machine 2, 

Feedforward neural network 17, 37, 

Fourier algorithm 30, 

Fuzzy learning algorithms 24, 

GA-BP Neural Network 52, 

Genetic algorithm 31, 

GFsSDAEsTSE Algorithm 45, 

Greedy Forward Selection Algorithm 45, 

k-Nearest Neighbor Algorithm 1, 13, 22, 

K-Star Algorithm Algorithm 15, 

Linear Regression Algorithm 7, 15, 28, 

Logistic Regression 53, 

MATLAB ANN Tool 53, 

MATLAB ToolBox 52, 

Multi Objective Genetic algorithm 40, 

Multi-layer Perceptron Algorithm 9, 47, 

Naive Bayes algorithm 5, 22, 28, 33, 48, 

New Hybrid Nonlinear MD Model-DT Classification 18, 

Probabilistic reasoning algorithm 19, 

Radial Basis Function Neural Network 2, 4, 

Random Forests Algorithm 6, 8, 11, 33, 35, 39, 45, 50, 

Recurrent Neural Networks Algorithm 28, 32, 

Reinforcement Learning Algorithm 10, 

Single-Layer Perceptron Algorithms 23, 

Support Vector Machines Algorithm 3, 9, 12, 15, 20, 21, 22, 25, 26, 38, 47, 

Support Vetor Regression Algorithm 27, 

TF-IDF weighting algorithm 43, 

Weka Framework 12, 15, 39, 44, 

Primary Studies
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Figure 4: Papers distribution by software development process activities 

In Table 3, the distributions of activities and/or software engineering processes by algorithm are presented. It 

can be identified that the Decision Tree algorithm participates in almost all software engineering activities. It is 

inferred that the reasons for this are ease of interpretation and adaptability of the Decision Tree algorithm in 

relation to other algorithms. Another algorithm that played a large part in all software engineering activities was 

Naive Bayes algorithm. The justification for this is related to the speed and efficiency of this algorithm in 

relation to others. In Table 4, references related to the application of machine learning algorithms in software 

engineering activities can be found. As can be seen, software testing and software planning activities had the 

greatest applications of machine learning algorithms. 
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Table 3: Algorithm Distribution by Software Engineering Activities. 

 

SE Activities Algorithms

Software Design Artificial Neural Network Algorithm

Decision Tree Algorithm

Multi-layer Perceptron Algorithm

Support Vector Machines Algorithm

Software Development Feedforward neural network

Support Vector Machines Algorithm

Software Planning Artificial Neural Network Algorithm

Decision Tree Algorithm

Extreme Learning Machine

Feedforward neural network

Fuzzy learning algorithms

K-Star Algorithm Algorithm

Linear Regression Algorithm

Naive Bayes algorithm

Radial Basis Function Neural Network

Random Forests Algorithm

Support Vector Machines Algorithm

TF-IDF weighting algorithm

Weka Framework

Software Quality Decision Tree Algorithm

Software Requirement Naive Bayes algorithm

Reinforcement Learning Algorithm

Support Vector Machines Algorithm

Software Testing BackPropagation Algorithm

Convolutional Neural Network

Daikon Tool

Decision Tree Algorithm

Fourier algorithm

Genetic algorithm

GFsSDAEsTSE Algorithm

Greedy Forward Selection Algorithm

k-Nearest Neighbor Algorithm

Linear Regression Algorithm

MATLAB ANN Tool

Multi Objective Genetic algorithm

Multi-layer Perceptron Algorithm

Naive Bayes algorithm

New Hybrid Nonlinear MD Model-DT Classification

Probabilistic reasoning algorithm

Radial Basis Function Neural Network

Random Forests Algorithm

Recurrent Neural Networks Algorithm

Single-Layer Perceptron Algorithms

Support Vector Machines Algorithm

Support Vetor Regression Algorithm

Weka Framework
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Table 4: Papers distribution by Software Activities. 

 

In Table 4 we can identify that software development, design, quality and software requirements activities had 

few applications of machine learning algorithms, despite being important in the area of software engineering. 

The software quality activity had only one paper published, development two papers, and software project only 

three papers published. Thus, we can conjecture that the focus of the application of machine learning algorithms 

is only on software testing and planning activities. The targeting of machine learning algorithms specifically in 

testing and planning activities may be related to the attempt to reduce human effort in the execution of these 

activities, due to the repetition of different types of tests and, regard to the application in planning activities, 

may be related to the attempt to reduce human effort in duration estimation, which also demand repetitive 

processes. Another factor that would justify the machine learning algorithms application in planning activities 

may be the need to increase the estimates accuracy. Although it also requires human effort, development 

activities and requirements analysis do not require repetitive processes, which can justify the low interest in 

SE Activities
Software 

Design

Software 

Development

Software 

Planning

Software 

Quality

Software 

Requirement

Software 

Testing

16 17 2 14 5 1

21 26 15 10 3

47 24 20 4

25 51 6

28 7

37 8
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43 11

44 12

53 13
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research on machine learning algorithms in these activities. 

5.3. What are the main application types of machine learning algorithms and/or frameworks in software 

engineering? 

This research question objective is to characterize the main types of machine learning algorithms applications in 

software engineering. Table 5 shows the papers distribution by type of application. 

Table 5: Papers distribution by application types. 

 

In Table 5, we can identify that the main types of machine learning algorithms applications in software 

engineering are software defect prediction and development activities effort estimation. These results confirm 

the results obtained in Research Question 02, which obtained the highest frequencies in software testing and 

planning activities, as defect prediction and effort estimation types are respectively related to software testing 

activities and software planning. 

Types of Applications

Anti-Patterns Detection 47

Software Quality Prediction 14

Software Project Quality Assessment 12

Bad Smell Prediction 39

Bad Smell Detection 48

Task reusability 17

Determining the Defect Severity Class 22

Testing Process Improvement 31

Improved Defect Prediction Processes 33, 34

Improved Web Application Testing Activities 1

Classification of Non-Functional Requirements 20

Software Failure Prediction 7, 45

Software Project Duration Prediction 37

Reduction of Software Project Duration 25

Requirements Elicitation 5, 31

Requirements Traceability 10

Component Reusability 16

Defect Detection 3, 42

Defect Prediction 4, 6, 8, 9, 11, 13, 18, 19, 23, 27, 29, 30, 32, 35, 36, 49

Estimation of Development Activities Effort 2, 15, 24, 43, 44

Software Maintainability Prediction 21

Estimate Prediction of Development Activities 28

Software Process Evaluation 26

Software Project Risk Prediction 38

Reduction of Test Cases in Web Applications 40

Primary Studies
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Figure 5: Papers distribution by application types. 

 

Figure 6: Grouped summary of main application types distributed by papers. 

The Figure 7 is a grouped summary classification of Figure 6. It was necessary to show the results in a more 

concise visualization of main application types by distributed papers. For example, in Figure 6, Defect 

Prediction application type got a percentual of 33,33%. However, Bad Smell Prediction obtained 2,08%. Both 

are related to Defect Prediction. Then, in Figure 7, these results were grouped in five main categories (Defect 

Prediction, Effort Estimate, Requirements, Reusability and Software Project) that increased all percentual of 

these categories because of summarization of the numbers in five categories. As results of grouped summary, 

we can see in the Figure 7 that the application of machine learning algorithms in software engineering is more 

restricted to software defect prediction (56%) and effort estimation (20%).  
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5.4. What are the main results achieved by the application of algorithms and/or machine learning 

frameworks in software engineering? 

This section has as main objective to identify the main results obtained with machine learning algorithms 

application. Table 6 shows the results obtained from the papers. 

Table 6: Papers distribution by algorithm application results 

 

In Table 6, we can identify that most papers reported positive results (e.g. cost reduction, improved accuracy in 

defect prediction, time reduction) in the application of machine learning algorithms in software engineering. The 

main results identified and that showed improvement in the software development process were improvement in 

defect prediction performance (11 articles), improvement in defect prediction accuracy (9 articles), 

improvement in defect prediction (5 articles) and reduction of the cost/time of development activities (3 

articles), which corroborates the result identified in Section 5.3, that the main types of machine learning 

algorithms applications in engineering software are software defect prediction and development activities effort 

estimation. The results of accuracy in defect and bad-smell predictions, improvement in project estimates, and 

improvement in software quality were reported in only two papers. Some of the papers reported more than one 

result, being, therefore, replicated in more than one type of application in Table 6. In Figure 8, these results are 

presented in the form of a histogram. 

Types of Applications

Cost reduction 31, 40,

Improved Defect Prediction 3, 4, 14, 25, 26,

Improving Defect Prediction Accuracy 7, 12, 15, 21, 23, 28, 30, 45, 48,

Error Rate Reduction 28, 42,

Improved Performance in Defect Prediction 9, 13, 17, 22, 28, 29, 32, 34, 35, 37, 38,

Accuracy of Defects and Bad Smell Predictions 11, 39,

Reduction in Software Maintenance and Testing Costs 8,

Improved Estimates for Large Projects 2,

Improvement in Small and Medium Project Estimates 2, 44,

Improved Accuracy of Predictions 10, 18,

Reduction of Manually Elaboration of Test Cases 1,

Reduction of Task Duration 45,

Improved Anti-Pattern Detection 47,

Improvement in Software Quality 6, 33,

Improved Failure Prediction 36,

Reduced Cost and Time of Development Activities 16, 33, 43,

Improved Software Testing Activities 27,

Primary Studies
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Figure 7: Papers distribution by results achieved. 

5.5. Results discussion 

This work characterized, in Sections 5.1, 5.2, 5.3 and 5.4, the main approaches of machine learning algorithms 

in software engineering. From the four research questions, the following questions were answered: 

 What algorithms are applied? 

 Where are they applied? 

 How are they applied? 

 What are the results of these applications? 

Below are the answers to the research questions: 

RQ-01 

 What are the main machine learning algorithms and/or frameworks used in software engineering?  

Answer: The main machine learning algorithms/framework applied in software engineering are: Support Vector 

Machine, Random Forests, Decision Tree, Naive Bayes, Weka Framework, K-Nearest Neighbor, Linear 

Regression, Artificial Neural Network, Feedforward, Multi- layer Perceptron and Radial Basis Function. 
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RQ-02 

 What are the software engineering activities in which machine learning algorithms and/or frameworks are 

applied? 

Answer: The main activities are Software Testing, Software Planning and Software Design. 

RQ-03 

 What are the main application types of machine learning algorithms and/or frameworks in software 

engineering? 

Answer: The main applications of machine learning algorithms in software engineering are in defect prediction, 

in software activity effort estimation, in defect detection, in the improvement of defect prediction processes and 

in software failure prediction. 

QP-04 

 What are the main results achieved of applying machine learning algorithms and/or frameworks in software 

engineering? 

Answer: The main results machine learning algorithms application in software engineering are: improved 

performance in defect prediction, improved accuracy in defect prediction, improved defect prediction and 

reduced activities cost and duration. 

The results obtained differ from the results of the work [17], which identified only the Artificial Neural 

Network, Bayesian Algorithm, Clustering Algorithm, Decision Tree Algorithm, Ensemble Algorithm, Instance 

Based Algorithm, Learning Finite Automata and Regression Algorithm algorithms. However, in this work the 

following algorithms were identified that were not reported in [17]: Support Vector Machines, Random Forests, 

Naive Bayes, K-Nearest Neighbor, FeedForward Neural Network, Back Propagation, Fourier Algorithms, 

Greedy Forward Selection and Probabilistic Reasoning. However, this difference in the number of identified 

algorithms could be related to the type of methodology applied in both works and the number of digital libraries 

examined. In work [17], only four digital libraries were selected (IEEE Digital Library, ACM Digital Library, 

SpringerLink, and ScienceDirect). Whereas in this work, we selected five digital libraries (ACM, IEEE, 

ScienceDirect, SpringerLink, and Google Scholar). 

The results achieved confirmed those obtained in the work [8], which is related to code errors reduction through 

software failure prediction, using machine learning algorithms. It was also confirmed the results obtained in the 

research [9], which is related to improve the accuracy of effort estimates through machine learning. 

No negative results were reported in the analyzed papers. However, it is recommended as future research to 

verify the existence of bias in the primary studies analyzed. It is recommended to direct new primary studies in 
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the research gaps identified in this work, i.e. requirements analysis, coding and software design activities which, 

according to Figures 4, 5, 6 and 7, no significant publications amount was found. Currently, publications 

academic focus, involving machine learning algorithms application in software engineering, is related to defect 

prediction and effort estimation activities. However, other important areas in software engineering, e.g. 

requirements analysis and software design, remain without the benefits of applying these algorithms. 

5.6. Threat to validity 

Different factors can influence the results of this systematic review, for example, the research repositories 

selected in the study, the search string created for the study, and the study review process. To mitigate these 

influences, the recommendations specified in Section 3, Methodology, were followed. In addition, the search 

string creation process was elaborated according to the recommendations of [23]. 

Another threat to validity was having used as the search string term only “Software Engineering”, not including 

terms specific to the phases of the software process, such as, “Requirements Engineering”, “Design”, “Testing”, 

among other similar terms. This may have excluded articles that deal more specifically with machine learning 

application in software development phases from the results. 

6. Final Considerations 

The main objective of this work was to carry out a systematic literature review to characterize the machine 

learning approach in software engineering. For this, systematic review methods recommended by the software 

engineering literature were used. 

53 articles were analyzed that provided answers to the research questions defined in Section 3. The algorithms 

Support Vector Machine, Random Forests, Decision Tree and Naive Bayes were the most applied algorithms in 

software engineering. Software Testing and Software Planning activities were the main activities benefited by 

machine learning algorithms. Defect prediction and software activity effort estimation were the main 

applications of machine learning algorithms in software engineering and the main results of this application 

were: improved performance in defect prediction, improved accuracy in defect prediction, improved defect 

prediction and reduced cost and duration of activities. 

It was possible to identify that the focus of academic research on the application of machine learning in software 

engineering is directed to testing and planning activities. Thus, design, requirements analysis and 

coding/development activities had few studies identified. Therefore, future work can be developed involving the 

application of machine learning in these activities, which may bring technological improvements and advances 

to software projects. 
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APPENDIX B. Systematic Review Protocol 

The Protocol used in this study is available on the link (URL): 

https://1drv.ms/u/s!AkbPoDpRXQFpkPoNSxSMSzHbMjHF2Q?e=5FDmkS 


