
 

118 
 

American Academic Scientific Research Journal for Engineering, Technology,  and Sciences   

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 

 

http://asrjetsjournal.org/  

 

A PDE-based Mathematical Method in Image Processing: 

Digital-Discrete Method for Perona-Malik Equation 

Ahmet Yıldırıma*, İsmet Karacab 

a,bEge University, Faculty of Science, Department of Mathematics,  35100, Bornova, İzmir, Turkey 

aEmail: yahmet49ege@gmail.com 

bEmail: ismet.karaca@ege.edu.tr 

 

 

 

Abstract 

In this study, we propose a new and effective algorithm for image processing. The method based on the 

combination of digital topology, partial differential equations and finite difference scheme is called the digital-

discrete method. We try to solve the Perona-Malik equation using the digital-discrete method. We use the 

MATLAB package program when analyzing images. The analyzes we make on the images show how the 

algorithm is useful, effective and open to development. 

Keywords: Perona-Malik equation; digital-discrete method; digital topology; finite difference method; image 

processing. 

1. Introduction  

Image processing problem is one of the most interested subjects in the modern world. There have been great 

advances in imaging processes, especially in the last 20 years. The widespread use of mobile phones and 

computers, the continuous development of TV screens, and advances in biomedical imaging have increased the 

interest in imaging processes. The main aim of our study is to contribute to this development by using 

mathematical tools. Our work is an interdisciplinary study. In addition to mathematical structures such as Digital 

Topology, Partial Differential Equations, and finite differences, image processing systems and MATLAB 

package program formed the basis of our work. 
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Especially in the last 20 years, the use of PDEs in image processing has started to increase. Mikula and 

Ramarosy implemented semi-implicit finite volume scheme in image processing [1]. Sarti and his colleagues 

used evolutionary PDEs in medical imaging  [2]. Weickert applied additive operator splitting method to 

nonlinear diffusion equations [3]. Mikula performed image analysis using different partial differential equations 

[4]. Gibou and his colleagues suggested automatic algorithms for the segmentation phase of radiotherapy 

treatment planning [5]. Angenent and his colleagues used  PDEs in medical imaging [6]. Kuijper used geometric 

and variational PDEs for image processing [7]. Nadernejad and his colleagues implemented PDEs-based model 

in image enhancement [8]. Kim and Lim applied fourth order PDEs-based methods in image denoising [9]. Lin 

and his colleagues designed PDEs and differential invariants for image problems [10]. Belaid  used topological 

gradient approach in image processing [11]. Niang and his colleagues used PDEs-based method for image 

problems [12]. Shen and his colleagues  implemented an adaptive partial differential equation in image 

processing [13]. Ghanbari and his colleagues used a restarted iterative HAM for TV models [14]. Liu and his 

colleagues applied an adaptive relaxation method for a fourth order PDE for image problems [15].  Nnolim 

proposed partial differential equation-based method for underwater image processing [16]. Yu and his 

colleagues implemented quasi-interpolation operators for bivariate quintic spline spaces in image processing 

[17]. Huang and his colleagues implemented hybrid analog-digital approach for image problems [18]. Benseghir 

and his colleagues used a partial differential equation that is based on a nonlinear structure tensor in image 

processing [19]. In this paper, we will use digital-discrete approach for Perona-Malik equation in image 

processing.   

2. Digital Continuous Function (DCF) and Gradually Varied Function (GVF) 

2.1. Digital Function (DF) [20] 

DCFs and GVFs were developed in 1980s. Rosenfeld suggested digital DCFs in digital imaging [21]. Chen 

proposed GVFs for interpolating a digital surface [22]. Khalimsky [23], Kong [24], Boxer [25], Rosenfeld [26] 

developed methods for digital deformations . Agnarsson and Chen established association between graph 

homomorphism and GVFs and [27]. Chen found systematic digital-discrete method  [28] and  Chen and Luo 

suggested harmonic functions in image analysis [29]. 

The DF is essentially a function defined in digital spaces. We can see that digital space is a subspace of 

Euclidean space. Digital space contains all grid integer points. We generally represent m-dimensional digital 

space with   ∑𝑚.  

Definition 2.1.1. [20,21]:  A DF is a function from  digital space I defined to integers. Usually we use {1,2,...,n} 

as the display set of the function. For example, 𝑓: ∑2 → {1,2, . . . , 𝑛}  is a digital function. Also we can see the 

DF as a function in general discrete space. 

Definition 2.1.2. [20,21]:  A DCF can be defined as a function with integer values of digital points are the same 

as its neighbor or differ by at most 1.  
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Let  𝑓: ∑𝑘 → {… ,1,2,3, … }  be a digital function and  x, y be two close points in ∑2.  

If | 𝑓(𝑥) − 𝑓(𝑦)| ≤ 1, then we say that f is a DCF. 

Proposition 2.1.1. [20,21]:  Any DCF is a Lipschitz function. Because  | 𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑑(𝑥, 𝑦)  is satisfied. 

2.2. Gradually Varied Function (GVF) [20] 

GVF was proposed by Chen in discrete and digital spaces [20,22,30].    

        𝐴1, 𝐴2,….,𝐴𝑚 ∈ ℝ,   𝐴1 < 𝐴2 < ⋯ < 𝐴𝑚  and 𝑝, 𝑞 ∈ ∑2 are given.  

Let  𝑓: ∑2(𝑜𝑟 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑠𝑝𝑎𝑐𝑒) → {𝐴1, 𝐴2,….,𝐴𝑚} be a function.  

If  𝑓(𝑝) = 𝐴𝑖  and  𝑓(𝑞) = 𝐴𝑗 , then level difference is | i-j | between f(p) and f(q). The GVF can be defined as 

follows. 

Definition 2.2.1. [20,22,30]:   For any p, q close pair in ∑2,  

        if  𝑓(𝑝) = 𝐴𝑖   and  𝑓(𝑞) = 𝐴𝑖−1, 𝐴𝑖  𝑜𝑟  𝐴𝑖+1 , then  f  is GVF on p  and  q. 

Definition 2.2.2. [20,22,30 ]:   If  f  is GVF on any p, q close pair in ∑2, then f  is GVF. 

Theorem 2.2.1. [20,22,30]:   Let  p, q be points in J, if  a gradually varied interpolation exists, then length of the 

shortest path in D between p and q is not less than level difference between f(p) and f(q). 

Gradually Varied Function (GVF) Algorithm [20,31]: 

J is a non-empty subset of D. fJ is a function defined on J. 

Step 1:    We test all p and p/  points in J. If  d(p, p/ ) ≥   LD(p, p/)  is not satisfied, then there is no GVF. Take 

D0 ← J. 

Step 2:    We take x from D − D0 where x has an adjacent vertex r in D0. Suppose fD (r) = Ai. 

Step 3:    We take  fD(x) = fD(r) = Ai.   We test x against every vertex p in D0:  If there is a p∈ D0  when           

d(x, p) < LD(x, p), change fD(x) to Ai−1 when fD(p) < Ai or change fD(x) to Ai+1   when fD(p) > Ai. 

Step 4:   Let D0 ← D0 ∪ {x}. 

Step 5:   We repeat 2–4 until D0 = D.     
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3. Digital-Discrete method for Perona-Malik equation 

3.1. Perona-Malik equation [32,33] 

The main purpose of nonlinear diffusion models is to create a measure for the preservation and enhancement of 

edges with images. The most important tools for this are nonlinear partial differential equations. The first 

nonlinear diffusion model used in image processing is called anisotropic diffusion. The anisotropic diffusion 

model was first proposed by Perona and Malik [34]. The Perona-Malik equation is as follows [32,33,34]: 

𝜕𝑢

𝜕𝑡
= 𝑑𝑖𝑣(𝑔‖∇𝑢‖∇𝑢),   𝑡 ≥ 0, 𝑥 ∈ Ω 

                                                              𝑢0(𝑥) = 𝑓(𝑥)                                                                                     (3.1.1)  

The Perona-Malik equation has been used for multiple scaling, enhancement and splitting of images. 

In equation (3.1.1), div is the divergence operator and u is the smooth image at time t.   ‖∇𝑢‖   is the gradient 

length of  u   and 𝑔‖∇𝑢‖  is the diffusivity function.  f(x) is initial image. 

The diffusivity function g is non-negative and monotonically decreasing. It has following properties: 

𝑔(0) = 1, 𝑔(𝑠) ≥ 0   𝑎𝑛𝑑  lim
𝑠→∞

𝑔(𝑠) = 0. 

Perona and Malik proposed two different choices for the diffusivity function  [32,33,34]: 

                                                        𝑔(𝑠) =
1

1+
𝑠2

𝜆2

                                                                                              (3.1.2) 

                                                       𝑔(𝑠) = 𝑒
−

𝑠2

𝜆2                                                                                               (3.1.3) 

3.2. A numerical approach for the Perona-Malik equation with  the finite difference method  [32,33,35] 

       Let's make the Perona-Malik equation given in (3.1.1) discrete. We can divide the ranges in the form 

       𝑥𝑖 = 𝑖ℎ1,          𝑖 = 1,2,3, … , 𝑁 

       𝑦𝑗 = 𝑗ℎ2,          𝑗 = 1,2,3, … , 𝑀                                                                                                                 (3.2.1) 

       𝑡𝑘 = 𝑘. ∆𝑡,          𝑘 = 1,2,3, … , 𝑛 

Where, h1    and  h2 indicate pixel placements in the x and y directions, respectively. Pixels are generally 
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considered to have a unit length, h1=h2 =1. 

We obtain a numerical approximation for the gradient length  ‖∇𝑢𝑖,𝑗‖ by using the central finite difference 

method and we use this approximation to calculate the diffusivity function 𝑔‖∇𝑢𝑖,𝑗‖   [32,33]: 

‖∇𝑢𝑖,𝑗‖ = √(
𝑑𝑢𝑖,𝑗

𝑑𝑥
)

2

+ (
𝑑𝑢𝑖,𝑗

𝑑𝑦
)

 2

 

                                                           ≈ √(
𝑢𝑖+1,𝑗  −  𝑢𝑖−1,𝑗

2ℎ1
)

2

+ (
𝑢𝑖,𝑗+1  − 𝑢𝑖,𝑗−1

2ℎ2
)

2

                                                 (3.2.2) 

The left side of equation (3.1.1) can be discretized as [32,33]: 

                                                                 
𝜕𝑢

𝜕𝑡
=

𝑢𝑖,𝑗
𝑘+1−𝑢𝑖,𝑗

𝑘

∆𝑡
                                                                                  (3.2.3) 

The right side of equation (3.1.1) can be discretized as [32,33]: 

         
𝜕

𝜕𝑥
(𝑔‖∇𝑢‖ )𝑢𝑥 +

𝜕

𝜕𝑦
(𝑔‖∇𝑢‖ )𝑢𝑦 

     =

𝑔
𝑖+

1
2,𝑗   
 

(𝑢𝑖+1,   𝑗  
𝑘 − 𝑢𝑖,   𝑗

𝑘 )−𝑔
𝑖−

1
2,𝑗
 

(𝑢𝑖,𝑗
𝑘   − 𝑢𝑖−1,𝑗

𝑘 )

ℎ1
2 +

𝑔
𝑖,𝑗+

1
2 

 (𝑢𝑖,𝑗+1
𝑘   − 𝑢𝑖,𝑗

𝑘 )−𝑔
𝑖,𝑗−

1 
2 

(𝑢𝑖,𝑗  
𝑘 − 𝑢𝑖,𝑗−1

𝑘 )

ℎ2
2                                        (3.2.4) 

The lattice we use for discretization in equations (3.2.2), (3.2.3),(3.2.4) is as follows  [32,33]:    

𝑢𝑖−1,𝑗−1                                              𝑢𝑖,𝑗−1                                           𝑢𝑖+1,𝑗−1 

𝑔
𝑖,𝑗−

1
2 

 

𝑢𝑖−1,𝑗                    𝑔
𝑖−

1

2
,𝑗

 

                      𝑢𝑖,𝑗                 𝑔
𝑖+

1

2
,𝑗

 

                    𝑢𝑖+1,𝑗 

𝑔
𝑖,𝑗+

1
2 

 

𝑢𝑖−1,𝑗+1                                              𝑢𝑖,𝑗+1                                           𝑢𝑖+1,𝑗+1 

Figure 3.2.1 

In the discretized state, mid-pixel points need calculated diffusivities. Therefore, we can simply calculate these 

values by taking advantage of the diffusivity in neighboring pixels. We can do this as follows  [32,33]: 
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𝑔
𝑖+

1
2

,𝑗
=

𝑔𝑖+1,𝑗  + 𝑔𝑖,𝑗

2
 

𝑔
𝑖−

1
2

,𝑗
=

𝑔𝑖−1,𝑗  + 𝑔𝑖,𝑗

2
 

𝑔
𝑖,𝑗+

1
2

=
𝑔𝑖,𝑗+1  + 𝑔𝑖,𝑗

2
 

                                                                        𝑔
𝑖,𝑗−

1

2

=
𝑔𝑖,𝑗−1  + 𝑔𝑖,𝑗

2
                                                                 (3.2.5) 

As a result of the operations, the discretized version of the Perona-Malik equation is as follows   [32,33]:      

      
𝑢𝑖,𝑗

𝑘+1  − 𝑢𝑖,𝑗
𝑘

∆𝑡
= (𝑔𝑖+1,𝑗

𝑘 +  𝑔𝑖,𝑗
𝑘 )[𝑢𝑖+1,𝑗

𝑘 −  𝑢𝑖,𝑗
𝑘 ] − (𝑔𝑖,𝑗

𝑘 +  𝑔𝑖−1,𝑗
𝑘 )[𝑢𝑖,𝑗

𝑘 −  𝑢𝑖−1,𝑗
𝑘 ] 

+(𝑔𝑖,𝑗+1
𝑘 + 𝑔𝑖,𝑗

𝑘 )[𝑢𝑖,𝑗+1
𝑘 − 𝑢𝑖,𝑗

𝑘 ] − (𝑔𝑖,𝑗
𝑘 +  𝑔𝑖,𝑗−1

𝑘 )[𝑢𝑖,𝑗
𝑘 −  𝑢𝑖,𝑗−1

𝑘 ]                                                             (3.2.6) 

‖∇𝑢𝑖,𝑗‖ = √(
𝑢𝑖+1,𝑗  − 𝑢𝑖−1,𝑗

2
)

2

+ (
𝑢𝑖,𝑗+1  − 𝑢𝑖,𝑗−1

2
)

2

                                                                                       (3.2.7) 

3.3. Image processing analysis by using digital-discrete method and Perona-Malik equation 

 We discretized the Perona-Malik equation using the finite difference method in Section 3.2. We do digital-

discrete adaptation in (k+1) so that   𝑢𝑖,𝑗
𝑘+1  ←   ( 𝑢𝑖,𝑗

𝑘+1 +  𝑔𝑣𝑓(𝑖, 𝑗)/2) in this chapter. We continue to adapt in 

this way. While creating our algorithm, we take advantage of the gradually varied function structure [20].  We 

apply the finite difference scheme while constructing the numerical structure of the Perona-Malik equation  

[32,33,35]. Our algorithm, which we have established with the help of the Perona-Malik equation and the 

digital-discrete method, is given below [20,32,33,35]: 

Algorithm (Digital-Discrete method for Perona-Malik equation in image processing) 

Step 1: Upload the main points. Data points with observation values are loaded. 

Step 2: Identify the solution. Arrange the points in the lattice space. 

Step 3: Expand the function according to Theorem 2.2.1 using the local Lipschitz condition. GVFs are obtained. 

(We use Gradually Varied Function (GVF) Algorithm) 

Step 4: Start getting the lattice points with the iteration of the Perona-Malik equation that we obtained by the 

finite difference method: 

                               
𝑢𝑖,𝑗

𝑘+1  − 𝑢𝑖,𝑗
𝑘

∆𝑡
= (𝑔𝑖+1,𝑗

𝑘 +  𝑔𝑖,𝑗
𝑘 )[𝑢𝑖+1,𝑗

𝑘 −  𝑢𝑖,𝑗
𝑘 ] − (𝑔𝑖,𝑗

𝑘 + 𝑔𝑖−1,𝑗
𝑘 )[𝑢𝑖,𝑗

𝑘 −  𝑢𝑖−1,𝑗
𝑘 ] 
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                                   +(𝑔𝑖,𝑗+1
𝑘 + 𝑔𝑖,𝑗

𝑘 )[𝑢𝑖,𝑗+1
𝑘 −  𝑢𝑖,𝑗

𝑘 ] − (𝑔𝑖,𝑗
𝑘 +  𝑔𝑖,𝑗−1

𝑘 )[𝑢𝑖,𝑗
𝑘 −  𝑢𝑖,𝑗−1

𝑘 ]      

‖∇𝑢𝑖,𝑗‖ = √(
𝑢𝑖+1,𝑗  − 𝑢𝑖−1,𝑗

2
)

2

+ (
𝑢𝑖,𝑗+1  − 𝑢𝑖,𝑗−1

2
)

2

 

Step 5: Restore the current values obtained in step 4 using a gradually varied function: 

We continue to use digital-discrete adaptation in (k+1) so that  

                                                      𝑢𝑖,𝑗
𝑘+1  ←   (𝑢𝑖,𝑗

𝑘+1  +   𝑔𝑣𝑓(𝑖, 𝑗)/2) 

Step 6: Perform image processing analysis with the help of the MATLAB-R2020b package program using our 

algorithm.  

We obtained images for different t values in Figure 3.3.1 and Figure 3.3.2 by using our algorithm. 

Original Image 
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Figure 3.3.1 

Original Image 
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Figure 3.3.2 
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4. Conclusion 

In this study, we applied a new and effective algorithm for image processing. We used the MATLAB-R2020b 

package program when analyzing images. The greatest progress we have achieved in image analysis is the 

preservation of image quality and the preservation of images as the t values increase. The solution algorithm we 

use is simpler than other algorithms and it is easier to apply to package programs such as MATLAB. Since the 

algorithm is based on topology, graph theory and continuity, the values we obtained in the revised finite 

difference approach with digital topology are efficient and stable. We are considering using the digital-discrete 

method and the methods produced from this method in imaging systems in other fields such as underwater 

imaging systems and biomedical imaging systems. 
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