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Abstract 

It is envisioned that 5G systems will increasingly leverage on the network slicing concept to meet the demand of 

diverse services, each tailored for specific user requirements.  In this context, slice admission algorithms that 

admit slices to the system, that optimize a given objective while ensuring the efficient allocation of resources, 

are required.  Reinforcement learning has been used successfully to implement optimal slice admission policies.  

But as the 5G wireless network becomes more extensive and intricate, the state and action spaces become large.  

The efficiency and convergence of reinforcement learning slice admission algorithms is negatively impacted in 

such a scenario.  To improve on this, deep reinforcement learning, a combination of reinforcement learning and 

deep learning, has been adopted.  In this paper, a Deep Q-Learning slice admission algorithm is designed; to this 

end a utility, was developed.  Results show that using the utility as a maximization objective enabled the 

designed algorithm to (i) optimize the infrastructure provider’s revenue while (ii) providing queue management, 

in terms of queue length and queue delay. 

Keywords: Deep reinforcement learning; Reinforcement learning; Network slice; 5G; Slice admission; Resource 

allocation.  

1. Introduction 

Fifth Generation (5G) communication networks are expected to be become increasingly heterogeneous by 

integrating different wireless technologies in a bid to satisfy diverse user demands.  In such networks, network 

entities will be required to make autonomous decisions that optimize resource allocation so as to meet specific 

user requirements; such as throughput, latency, reliability and efficiency.  Machine learning has been 

successfully used in other fields to solve decision making problems [1]; this success has seen machine learning 

being applied in the field of wireless networks.   
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In this context, reinforcement learning (RL) has been employed in dynamic decision making in the highly 

uncertain, time varying and heterogeneous 5G wireless network environment [2].  Reinforcement learning 

enables a network agent make optimal decisions; this is achieved by  the agent interacting with the environment 

and observing how it responds to its actions.  The agent uses states and actions and the response of the 

environment to its actions to continually modify its actions; this enables the agent independently learn the 

optimal sequence of actions that optimizes a given objective [1,3].  However, as the complexity and size of the 

wireless network increases, the state and action spaces become large; this results in the convergence to optimal 

policy slowing down in reinforcement learning algorithms such as Q-learning algorithms.  Additionally, the Q-

tables become too large to practically maintain on mobile devices.  To overcome these shortcomings, deep 

reinforcement learning (DRL), a combination of reinforcement learning and deep learning was developed.  

Applications of DRL in wireless communications include network access and adaptive rate control, proactive 

caching and data offloading, network security and connectivity preservation, resource sharing and scheduling 

among others [2].  With respect to resource allocation in 5G systems, the concept of network slicing, which 

promises improved performance and efficiency, has been widely adopted in literature [4,5].  Accommodating 

heterogeneous services, using the same infrastructure, on the current monolithic wireless network architecture 

cannot be accomplished effectively and efficiently.  Network slicing overcomes this by dividing the 

infrastructure into logical networks (slices) each customized to provide the quality of service required for 

diverse applications.  The owners of the physical network resources, known as infrastructure providers, sell the 

network slices to tenants who then sell their services to end users.  Each network slice instance consists of a set 

of virtual network functions (VNFs) run on the same network infrastructure.  VNFs are dynamic, unlike the 

network infrastructure, which is largely static; this gives VNFs the capability of supporting time-varying 

application specific service requests.  Upon the reception of a slice request, resources are dynamically allocated 

and associated VNFs launched, i.e. that is orchestrated [6,7].  With network slicing, diverse services with unique 

QoS requirements can be deployed on the same physical infrastructure in a cost effective, efficient and effective 

manner.  With the advent of network slicing for 5G systems, comes the need for slice admission algorithms.  

Slice admission should be implemented in manner that efficiently allocates network resources so as to meet 

predetermined objectives for the infrastructure provider coupled with the specific requirements of the network 

slice.  Machine learning has been applied to slice admission algorithms in literature.  In [8,9,10] reinforcement 

learning based slice admission algorithms that maximize the revenue of the infrastructure provider, are 

presented.  The work in [8] developed a Q-learning algorithm that admits slices, in a multi-tier 5G wireless 

network, that maximize the revenue while satisfying resource constraints, in terms of the maximum system 

capacity.  The authors in [9] represent the resource constraints in terms of an admissibility region, which an 

admitted slice must lie within; based on this, a Q-learning slice admission algorithm that optimizes revenue was 

developed.  While in [8,9] the service requirements of the slice requests are in terms of capacity, and the 

requests are serviced in a first-in-first-out (FIFO) manner, in [10] latency requirements are considered and 

priority based slice admission is applied.  A RL based slice admission policy, that maximizes revenue, by 

admitting slices depending on their priorities (highest priority first), was developed.  Application of DRL slice 

admission algorithms for revenue maximization is demonstrated in [11], where the work done in [9] is extended 

by incorporating DRL techniques.  The authors in [12] proposed a DRL based slice admission algorithm that 

maximizes a utility, which they defined as the immediate reward minus the queuing delay cost.  In this paper, 
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the work done in [8] is extended by incorporating DRL techniques.  A utility, used as an optimization objective 

for the DRL based slice admission algorithm, is proposed.  Optimization of the developed utility resulted in the 

designed Deep Q-learning slice admission algorithm having the capability of maximizing the revenue, while at 

the same time managing the queue lengths and queue delays. 

2. An Overview of Deep Reinforcement Learning 

Machine learning, is a subset of artificial intelligence, which focuses on building algorithms that use training 

data or past experience to automatically improve their performance at a given task.  Machine learning 

algorithms can be divided into three broad categories; supervised learning, unsupervised learning and 

reinforcement learning [13].  The aim of supervised learning is to learn the optimal mapping function that maps 

inputs into outputs; this is accomplished by training the algorithm using labeled input and output data. Examples 

of supervised learning include classification, regression and neural networks.  Unsupervised learning algorithms 

analyze unlabeled data with the aim of identifying patterns within the data set; clustering is an example of 

supervised learning.  In reinforcement learning, an agent learns by taking actions in an environment, observing 

the rewards (or penalty) received, and then automatically modifying its strategy to achieve the optimal policy, 

which is a sequence of reward maximizing actions for every state [14].  Deep reinforcement learning, more 

specifically deep Q-learning, combines reinforcement learning and deep learning.  In this section, the 

fundamentals of reinforcement learning (RL) and deep reinforcement learning (DRL) are presented. 

2.1. Reinforcement Learning 

In reinforcement learning, a Markov Decision Process (MDP) [15] is used in problem formulation; in MDP the 

system is modeled as (i) a finite set of states, 𝑠 ∈ 𝑆, (ii) a finite set of actions, 𝑎 ∈ 𝐴 , (iii) probability of 

transitioning from state s to state 𝑠′ (𝑠, 𝑠′ ∈ 𝑆) when action 𝑎 ∈ 𝐴 is executed and (iv) an immediate reward, 𝑟, 

received after action 𝑎 is performed.  The agent exists in an environment defined by the state space 𝑆, and in 

each discrete time step 𝑡, the agent performs action 𝑎𝑡  while in state 𝑠𝑡  it receives a reward 𝑟𝑡  which is the 

immediate value of the state-action transition, as shown in Figure 1(a).  The policy 𝜋 ∶ 𝑆 → 𝐴 is a state to action 

mapping.  In MDP problem formulation, the aim is for the agent to maximize the cumulative reward.  To this 

end, for a finite time horizon and discounted MDP, the value function that is used to measure the worth of a 

policy is defined as follows 

𝑉𝜋(𝑠𝑡) = ∑𝛾𝑖𝑟𝑡+𝑖 ,

∞

𝑖=0

∀𝑠 ∈ 𝑆 

0 ≤ 𝛾 < 1 is the discount factor.  The optimal policy 𝜋∗, enables an agent select the optimal action 𝑎𝑡, given a 

current state 𝑠𝑡 ; this can be achieved by the agent learning the optimal value function given by [3] 

 

𝑉∗(𝑠) = max
𝑎𝑡

[𝑟(𝑠𝑡 , 𝑎𝑡) +  𝛾𝑉𝜋(𝑠𝑡+1)] 
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2.1.1. Q-Learning 

The most popular and effective reinforcement learning technique in literature is Q-learning.  Q-learning is 

model free in that it does not use transition probabilities or the value function 𝑉∗(𝑠) defined above.   In Q-

learning, the optimal policy is realized by determining the optimal values of the Q-function, 𝑄(𝑠, 𝑎), defined as 

𝑄(𝑠, 𝑎) = 𝑟(𝑠𝑡 , 𝑎𝑡) +  𝛾𝑉𝜋(𝑠𝑡+1) 

The Q values are stored in a table, the Q-table, with each state-action pair having a separate entry.  The Q-table 

is updated in an iterative manner as follows.  The agent, while in the present state 𝑠, executes an action 𝑎, 

receives reward 𝑟 and moves to the next state 𝑠’.  The entries in the Q-table are then updated using the following 

rule, where 𝑄𝑛(𝑠, 𝑎) denotes the learned value after the 𝑛𝑡ℎ iteration; 

𝑄𝑛(𝑠, 𝑎) ← 𝑄𝑛−1(𝑠, 𝑎) + 𝛼𝑛−1 [𝑟𝑛 + 𝛾max
𝑎′

𝑄𝑛−1(𝑠
′, 𝑎′) −𝑄𝑛−1(𝑠, 𝑎)] 

𝛼𝑛 ∈ [0,1] is the learning rate which has to satisfy the conditions ∑ 𝛼𝑛 = ∞∞
𝑛=0  and ∑ 𝛼2 < ∞∞

𝑛=0  [16].  The 

optimal state-action pairs, i.e. the actions that optimize the Q-value for each state, constitute the optimal policy. 

 

 

 

 

 

 

 

Figure 1: (a) Reinforcement learning (b) Artificial neural network. 

2.2. Deep Reinforcement Learning 

Deep reinforcement learning combines reinforcement learning and deep learning; it leverages on the capabilities 

of deep learning to improve the performance of reinforcement learning algorithms. 

2.2.1. Deep Learning 

Deep learning techniques and algorithms have the ability of learning from large amounts of data; they 

accomplish this by utilizing a Deep Neural Network (DNN) which gives them the ability to extract high-level 
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abstract features of raw data.  Most DNNs are based on Artificial Neural Networks (ANNs), which are inspired 

by the human brain [17].  An ANN is made up of network units (neurons) in three interconnected layers, the 

input, hidden and output layers as shown in Figure 1(b).  The input layer neurons receive input data, compute it, 

and forward the result to the hidden layer units.  The computed outputs of the hidden units are used as inputs to 

the output layer neurons.  Each unit computes a single output based on a weighted sum of its inputs and an 

activation function.  Some examples of activation functions used in neural networks are the Sigmoid and Relu 

activation functions [3], shown in Figure 2.  Learning in neural networks involves determining the weight values 

(𝑤𝑖) that enable the ANN perform the task that it was designed for.  The appropriate weight values are obtained 

by training the ANN using the backpropagation algorithm and a set of training data.  The training data set 

consists of input data and the expected (correct) output, i.e. the target value.  Backpropagation employs gradient 

descent in an effort to minimize the loss function between network outputs, obtained by feeding forward the 

input data, and the corresponding target values.  The gradient of the loss function is calculated, and then 

propagated back across all neurons and is used to adjust the neuron weights [1] [3].  A DNN is a neural network  

 

 

 

 

 

 

Figure 2: Relu and Sigmoid activation units. 

with one or more hidden layers.  There are two basic types of DNNs; the Feedforward Neural Network (FNN) 

and the Recurrent Neural Network (RNN).  In FNN information only moves in one direction, forward; from the 

input units, through the hidden layers units and then the output units.  On the other hand, in RNNs, information 

cycles through loops; current inputs and what was learned from previous inputs is used in decision making.  

Among the FNNs, the Convolutional Neural Network (CNN) is the most well known model because of its 

application in image and speech recognition and processing [18].   

2.2.2. Deep Q-Learning 

Deep Q-Learning is a DRL model that uses a Deep Q-Network (DQN), which is basically a DNN, to 

approximate the Q-function, in place of the Q-Table, as shown in Figure 3.  The function of the DQN is to 

accept a state as its input and then calculate the Q-values for every action in the action space for that state.  The 

present state, 𝑠, is passed through the neural network and then the maximum output Q-value (predicted Q-value) 

is determined.  The action corresponding to the predicted Q-value is executed, and the reward, 𝑟, from the 
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environment and the next state 𝑠’ are observed.  The state 𝑠’ is then passed through the DNN, and the target 

 

 

 

 

 

 

 

Figure 3: Deep Q-learning. 

Q-value required for training the neural network is calculated using 𝑟 + 𝛾max Q(𝑠′, 𝑎′) where max Q(𝑠′, 𝑎′) is 

the maximum Q-value from among the Q-values calculated by the neural network with 𝑠’ as the input state.  The 

following techniques are used to improve the performance of Deep Q-learning algorithms [19] 

 Fixed target Q-Network: During the training process, the weights of the deep Q-network are updated 

frequently.  Using the same network to calculate the target Q-values results in constantly changing values 

being used to update the Q-network; this introduces instability in the algorithm.  This issue can be addressed 

by using a separate target Q-network; the weights of the target Q-network are updated every so often with the 

weights of the main (primary or policy) Q-networks.   

 Experience Replay:  The agent’s experiences at each time step are stored in a replay memory.  Each 

experience includes the current state, action taken, reward received and the next state, i.e. (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1).  

The algorithm randomly selects samples from the replay memory to train the neural network.  Training the 

DNN using the predicted Q-values and the calculated target values will result in inefficiencies in the learning 

process; this is due to the correlation between the Q-values and the target values.  Using random samples for 

the replay memory breaks this correlation.  

3. Deep Q-Learning Slice Admission Algorithm 

3.1. System Model 

The network model used is that of a multi-tiered 5G network as in [8].  A single macro-cell, with a capacity (in 

bits per second) of 𝐶𝑀𝑎𝑐, is overlaid with 𝐵 non overlapping small cells; the small cells have identical coverage 

area and capacity, 𝐶𝑆𝑐.  It is assumed that a user, at any given time, is associated with a single base station.  The 

users are also assumed to be uniformly distributed in the macro-cell.  Three service types will be considered; 

ultra-reliable low latency communication (uRLLC), enhanced mobile broadband (eMBB) and internet of things 
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(IoT) services as in [8].  The capacity requirement for the uRRLC and eMMB users is 𝐶𝑢 and 𝐶𝑒 respectively; 

an IoT user, defined as a group of 𝑑𝑖 IoT devices, requires a capacity of 𝐶𝑖.  IoT and eMMB users only receive 

network service via the macro-cell base while uRRLC users, are serviced by the small cell that they are located 

in.  The network is assumed to be owned and operated by an infrastructure provider who provides network slices 

to tenants; the tenants in turn provide services to the end users.   A network slice is characterized by the tuple 

[𝑚, 𝑛, 𝑡, 𝜌𝑚] where a) 𝑚 ∈ [1, 2, 3] are the supported service types with IoT, uRRLC and eMMB represented by 

𝑚 = 1, 2 𝑎𝑛𝑑 3 respectively b) 𝑛 is the size of the slice, i.e. the number of users the slice should accommodate 

c) 𝑡 is the number of time units the slice is requested for and d) 𝜌𝑚is the price per unit time per user, for service 

type m, that the tenant has to pay for acquiring the slice from the infrastructure provider. 

3.2. Algorithm Description 

The system is modeled as a set of distinct states, 𝑠 ∈ 𝑆, where a state is defined as an 3 × 𝑁 matrix, where 𝑁 is 

the maximum size of a network slice.  The rows represent the service type, while the columns represent the size 

of a network slice.  Therefore, the element 𝑠𝑚𝑛  denotes the number of slices of size 𝑛 and type 𝑚 that are 

present in the system.   Incoming slice requests, of the form [𝑚, 𝑛, 𝑡], are placed in a queue, 𝑄𝑚𝑛 , depending on 

their type and size.  The Deep Q-learning algorithm retrieves the slice requests from the queues in a FIFO 

approach, and allocates them appropriate network resources if they are available.  Once the slice request is 

processed, it is removed from the queue.  The possible actions, 𝑎 ∈ 𝐴, defined as (𝑎1, 𝑎2, 𝑎3, 𝑅), where 𝑎𝑚 is an 

N-tuple (𝑎𝑚1, 𝑎𝑚2, … . , 𝑎𝑚𝑁); the 𝑛𝑡ℎ element  𝑎𝑚𝑛  corresponds to the action of accepting a slice of size 𝑛 of 

service type 𝑚.  If appropriate resources for a slice request are not available, then the request will remain in the 

queue; this is represented by the action 𝑅.  The Q-learning algorithm is designed to maximize the utility defined 

as follows; 

𝜚 = 1 + log𝑒[𝑛𝑡(𝜌𝑚 + 𝜑)] 

with  

𝜑 = {
𝑐𝑚(𝑇𝑎𝑔𝑒.𝑚 − 𝜏𝑚) 𝑇𝑎𝑔𝑒.𝑚 > 𝜏𝑚

0 𝑇𝑎𝑔𝑒.𝑚 ≤ 𝜏𝑚
 

where (i)  𝑇𝑎𝑔𝑒.𝑚 is the queuing delay of a slice request of type 𝑚 (i.e. the time the slice request has spent in the 

queue) (ii) 𝜏𝑚 is the service type dependent tolerable delay and (iii) 𝑐𝑚 is the cost associated with delaying a 

slice request in the queue for a period more than the tolerable delay.  Each time a slice is admitted into the 

system, the defined utility is gained by the algorithm; at the same time, the infrastructure provider earns a 

revenue of 𝑡𝑛𝜌𝑚.  The algorithm maximizes the utility subject to the following capacity constraints 

𝐶𝑖 ∑𝑛𝑠1𝑛

𝑁1

𝑛=1

+ 𝐶𝑒 ∑𝑛𝑠3𝑛

𝑁3

𝑛=1

≤ 𝐶𝑀𝑎𝑐         𝐶𝑢 ∑𝑛𝑠2𝑛

𝑁2

𝑛=1

≤ 𝐵𝐶𝑆𝑐  

A DQN is implemented to achieve utility maximization; the DQN accepts the state matrix elements as inputs, 
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therefore the number of inputs to the DQN is 𝑚𝑛.  The outputs of the DQN, i.e. units in output layer, represent 

all possible actions for a given state and are 𝑁 × 3 + 1 in number.  The maximum network slice size was set to 

𝑁 = 2, making the number of inputs and outputs 6 and 7 respectively.  The DQN has two hidden layers; the 

first and second hidden layers have 15 and 25 neurons respectively.  The activation function used in the hidden 

layers is the Sigmoid function while the ReLu function is used in the output layer.  The Deep Q-learning 

algorithm, with experience replay and target Q-network, is described in Table 1.   

Table 1: Deep Q-Learning Algorithm. 

 

Initialize replay memory, D, with a capacity of M 

Initialize the policy Q-network, 𝑸, with random weights 𝑾 

Form the target Q-network, �̂� by cloning the policy network, i.e. 𝑾′ = 𝑾 

for episode = 1 to E 

 for each time step 

  Select an action 𝑎𝑡 via exploration or exploitation 

 Perform the action 𝑎𝑡, observe the immediate reward 𝑟𝑡 and the next state 𝑠𝑡+1 

 Store the experience, (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), in the replay memory D 

 Select a random batch of J samples from D 

 for  j = 1 to J 

Pass  𝑠𝑗 through the policy Q-network; select from the output Q-values,  the Q value that corresponds to the 

sample action, i.e. the predicted Q-value 𝑸(𝑠𝑗 , 𝑎𝑗)   

Pass 𝑠𝑗+1 through the target Q-network to calculate the target Q-value 

𝑟𝑡 + 𝛾max
𝑎𝑗+1

�̂�(𝑠𝑗+1, 𝑎𝑗+1) 

Calculate the loss between predicted and target Q-values 

[𝑟𝑡 + γmax
𝑎𝑗+1

�̂�(𝑠𝑗+1, 𝑎𝑗+1) − 𝑸(𝑠𝑗 , 𝑎𝑗)]

2

 

Back propagate the loss and update the weights 𝑾 

  end for 

  After every 𝑥 time steps set 𝑾′ = 𝑾 

 end for 

end for 

The epsilon-greedy strategy was used to balance exploration and exploitation.  The value of epsilon was 

initialized to 𝝐 = 𝟏 and a decay rate of 𝝐𝑫 = 𝟎. 𝟎𝟎𝟏 was used.  When it is time to select an action, a number 

between 0 and 1 is randomly selected and compare to 𝝐 ; if it is < 𝝐  the random action is selected i.e. 

exploration.  Otherwise, if it is > 𝝐  then the action that corresponds to maximum predicted Q-value for that 

state is selected i.e. exploitation.  Epsilon is updated every episode as follows 𝝐 = 𝟏 − (𝑬 − 𝟏)𝝐𝑫 .  The 

backpropagation algorithm and updating of the policy Q-network weights is implemented as described in [3].  

The target Q-network weights are updated after every  𝒙 = 𝟏𝟎𝟎 time units.  The capacity of the replay memory 
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D was set to 𝑴 = 𝟏𝟎, and the random batch that was selected from D for training purposes was 𝑱 = 𝟓.  The 

discount factor was set at 𝜸 = 𝟎. 𝟏. 

4. Simulation and Results 

In this section, the performance of the Deep Q-Learning algorithm is evaluated via simulations.  The simulation 

parameters used are as follows; the number of small cells is set at 𝐵 = 3, and the cell capacities are related as 

𝐶𝑀𝑎𝑐 = 12𝐶𝑆𝑐 .  The capacity requirements for the network slices are set as 𝐶𝑢 = 𝐶𝑆𝑐/4 , 𝐶𝑒 = 1.5𝐶𝑢  and 

𝐶𝑖 = 𝐶𝑢/2.  The arrival rates for IoT, eMMB and uRLLC slice requests are 0.2, 0.35 and 0.35 respectively, 

while the cost per unit time are related as follows, 𝜌2 = 4𝜌1and  𝜌3 = 3𝜌1.  The tolerable delay and delay cost 

were set as 𝜏1 = 75, 𝜏2 = 30, 𝜏3 = 60 and 𝑐1 = 1/32, 𝑐2 = 1/20, 𝑐3 = 1/40 respectively.  The number of 

queues is 6, and each queue is stores a maximum of 100 slice requests.  The performance of the Deep Q-

Learning slice admission algorithm is compared to 1) a Q-learning slice admission algorithm, implemented as in 

[8], 2) an algorithm that admits slices in a random manner.  In Figure 4 a) and b) the average utility per slice 

request and cumulative revenue per slice request are plotted respectively.   

 

 

 

 

 

 

Figure 4: a) Utility and b) Revenue against number of episodes. 

The utility, 𝜚, takes into account the revenue to the infrastructure provider, 𝑛𝑡𝜌𝑚 and the cost of delaying a slice 

request, i.e. keeping the slice request in the queue over its threshold delay value, 𝜑; therefore, optimizing 𝜚 

results in revenue maximization.  From Figure 4, it is observed that the Deep Q-learning algorithm outperforms 

both the Q-learning and random algorithms.  The Q-learning algorithm considers state transitions, which the 

random algorithm does not, resulting in the Q-learning algorithm having better performance.  The Deep Q-

learning algorithm additionally uses historical data, stored in the memory replay, to train the network weights; 

this results in its observed superior performance.  In Figure 5 a), b) and c) the average queue lengths for Deep 

Q-learning, Q-learning and random algorithms respectively are plotted.  The queue lengths for the random 

algorithm are primarily determined by the arrival rate of the slice requests; this is because the slices are admitted 

in a random manner.  Since the arrival rate for the IoT slice requests is less than that for eMMB and uRRLC 

slice requests, the IoT queue lengths are the shortest, averaging values of below 10, as seen in Figure 5 c), while 

those for eMMB and uRRLC are consistently equal to the maximum queue length of 100. 
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Figure 5: Average queue length for a) Deep Q-Learning b) Q-Learning and c) Random Algorithms. 

Both the Q-learning and Deep Q-learning algorithms use the utility 𝜚 as the maximization objective; as observed 

earlier 𝜚   is dependent on 𝜑 ; 𝜑  on its part depends on 𝑇𝑎𝑔𝑒.𝑚 − 𝜏𝑚 .  Therefore, the longer the delay in 

processing a slice request results in an increase in 𝜑, and a corresponding increase in 𝜚; this increases the 

probability of the slice being admitted.  The effects of these are observed in Figure 5 a) and b) where it is noted 

that the DRL and RL algorithms have queue management capability; in general there does not exist such a large 

difference in queue lengths, as observed for the random algorithm.  From Figure 5 a) it can be seen that the DRL 

algorithm maintains the queue lengths between 30 and 90, after 300 episodes.  On the other hand, the RL 

algorithm maintains the queue lengths between 40 and 100, after 100 episodes.  In Figures 6 (a), (b) and (c) the 

normalized delays for Deep Q-Learning, Q-learning and random algorithms are plotted respectively.  The 

normalized delay is calculated as follows; (𝑇𝑎𝑔𝑒.𝑚 − 𝜏𝑚)/𝜏𝑚 .  For the random algorithm, it is observed in 

Figure 6 c) that the normalized delays for IoT service requests have the lowest values, of approximately zero, in 

comparison to that of eMMB and uRLLC slice requests, whose values range from 1 to 25.  From Figure 6 a) and 

b) we observe that the Deep Q-learning algorithm maintains the normalized delays between 2 and 15 after 300 

episodes while for the Q-learning algorithm it is between 2 and 20 after 100 episodes.  It is observed from 

Figure 5 a) and 6 a) that after 80 episodes, queue length and queue delay management kicks in for Deep Q-

learning slice admission algorithm; from Figure 5 b) and 6 b), this happens after 100 episodes for the RL slice 

admission algorithm.  The Deep Q-learning algorithm outperforms the Q-learning algorithm because the 
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knowledge gained regarding the system and the environment is used in queue length and queue delay 

management; after 80 episodes, the queue lengths and normalized delay values continue reducing.  This is not 

the case for the Q-learning algorithm, since after 100 episodes, the queue lengths and normalized delays remain 

approximately constant. 

 

 

 

 

 

 

 

 

Figure 6: Normalized delays for (a) Deep Q-Learning, (b) Q-Learning and (c) Random algorithms. 

5. Conclusions 

In this paper, a deep reinforcement learning slice admission algorithm was designed.  A utility, that 

incomporates rewards and the cost of slice request delays, was also designed and served as the maximisation 

objective for the algorithm.  Results show that the Deep Q-learning slice admission algorithm has superior 

performance when compared to Q-learning and random slice admission algorithms; this is due to its use of 

historical data and the ability to extract system features, which equips it to make optimal decisions.  

Additionally, the results show that  the utility developed enabled the algorithm maximise revenue while 

simultenously offering queue length and queue delay management. 

6. Recommendations  

In this study, the end users are assumed stationary.  But in paractical mutli-tier 5G wireless networks, the users 

are mobile with the capability of moving from one cell to another.  This movement will impact the design of 

slice admission algorithms.   
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