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Abstract 

Typically, linear strain triangle LST is widely used for elastic analysis not only due to its ease but also due to the 

good results it can lead to over the traditional constant strain triangle CST. In plane elastic analysis of two 

combined materials the LST is quite reliable and trust worthy in terms of stress results for the same element 

size, LST is very useful in modelling combined materials thus believed to be efficient and can easily take into 

consideration, self-weight of used materials, strains due to causes other than loading; such as moisture, 

temperature, creep and shrinkage are easily incorporated. A mathematical formulation of stiffness matrix, stress 

and the more rarely dealt with consistent load vector for loads distributed on element edge are proved and 

highlighted for young engineers who mostly dealing with readily used FE codes, the formula proved for LST 

element load vector is further extended and thus a consisted load vector for conical axe-symmetric shell element 

is introduced. 

Keywords: consistent load vector for conical axe-symmetric shell element or pressure vessel element; modeling  

of multiple materials; mathematics of finite element LST; stiffness matrix, stress and, consistent load vector. 

1. Introduction 

The constant strain triangle CST provides good introduction that is easily understood and formulated. It is also a 

useful element for practical problems, but does require that rather small elements be used in regions where stress 

varies abruptly. This means that the number of such elements tends to be large when reliable stress values are 

needed. By using more advanced elements such as LST, in which the stress may vary within the element, much 

better results can be obtained with the same number of elements.  
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There is no limit to the degree of variation in stress that can be specified and, in this paper, only one step in this 

direction will be taken; provision will be made for the stress to vary linearly within the element a mathematical 

presentation of stiffens matrix, stress and the rarely dealt with consistent load vector is proved based on 

conservation of energy principle the formula is readily extended to axe-symmetric or pressure vessel element. 

2. Displacement Functions 

Later it will be shown that the strain, and hence the stress varies linearly if the displacement function is of the 

form  

        u= α1+α2x+ α3y+ α4x
2
+ α5xy+ α6y

2 

           
v= α7+α8x+ α9y+ α10x

2
+ α11xy+ α12y

2
                                       

        or, 

             u                     

             v      = Pα                                                                                                                                1 

     and    

             1    x    y    x
2
     xy      y

2
        0      0     0     0    0    0 

   P=      0    0     0     0      0      0         1    x    y    x
2
    xy      y

2 
                                                        2 

To determine the six-unknown coefficients in the function for u we must know six horizontal displacements at 

six specified points. The same is true for the unknowns in the v function. This can be accomplished by 

introducing nodes at the midpoints of the element sides as shown in figures (a, b and c) It will be noted that local 

axis has been established with origin at the centroid of the element. Dealing with these local axes does not alter 

the values in the stiffness matrix but does make it easier to perform the integration in the stiffness formula  

          K= [ A
-1

]
T
∫ B

T
DB dv A

-1
 

  The displacements at node 1, δ1 and δ7 are given as  

          δ1 

              δ7       =  P x = x1 . α                                                                                                                 3 

                                   y= y1 

                     1    x1    y1      x1
2
      x1y1      y1

2
      0       0       0        0      0       0    

              =     0     0     0       0          0          0       1    x1    y1      x1
2
      x1y1      y1

2  
α

  

 Similar equations can be written for δ components at all other nodes. 

When the δ components are put into numerical order these equations become 

                                          Ᾱ         0 
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                                  δ=    0          Ᾱ  α                                                                                      4 

 

where 

 

  

 

                                         1    x1    y1      x1
2
      x1y1      y1

2 
 

                                         1    x2    y2      x2
2
      x2y2      y2

2
 

                           Ᾱ  =       1    x3    y3      x3
2
      x3y3      y3

2                      
       5 

                                         1    x4    y4      x4
2
      x4y4      y4

2
 

                                         1    x5    y5      x5
2
      x5y5      y5

2  
   

                                          1    x6    y6      x6
2
      x6y6      y6

2
 

 

Then equation 4 becomes                                Ᾱ      0 

                                        δ= A α and     A =                                              6 

                                                                          0      Ᾱ 

Solving for α gives  

                                     α= A
-1

 δ                                                                                                        7 

A is a12x12 matrix and could be inverted directly, but much time is saved by inverting the submatrix Ᾱ and then 

incorporate in A
-1

 

The displacement function in 1 is then written 

                            u 

                                     = P A
-1

 δ                                                                                                    8 

                            v 

Now compatibility of the displacements is then checked at points located on the common boundary between 

adjacent elements. That is, we will determine if pairs of points that touched one another across a boundary 

before displacement, remain in contact after displacement and hence whether displacement causes gaps to 

appear. Considering only u displacement, the function in general is 

               u= α1+α2x+ α3y+ α4x
2
+ α5xy+ α6y

2 
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                                                                                        5 

                                                                                                              4 

                                                             6                                                                 

                                                                                          centroid                                      3 

                                                                             

                       1                                                 2 

a- Local axis and Local Numbering System 

 

     

                                                                                 δ11 δ5 

                                                       δ12                                                                  δ10 δ9 

  δ6 δ4 

 δ7 δ8 δ3 

δ2 

 δ1  

b- Nodal Displacement Components 

                                                         

                                                                                             f11  

                                                                                                                                                                                    f5     f10 

                                                             f12                                                                      f4             f9 

                                                          f6                                                                                                                                  

 f7                                                                                 f8   f3 

f2 

   f1       

c- Forces Acting on Element  

However, we are interested in u only at points on a particular boundary. Let the boundary be parallel to y axis 

which means that all x components are constants and the u function takes the parabolic form ub =A +By +Cy
2
, 

on this boundary there are 3 nodes, hence 3 unknown values of ub are the constants A, B and C can be 

determined and shape of the displaced edge would be a uniquely determined parabola. If we now consider the u 

displacements of points just across the boundary, they too vary parabolically and are uniquely determined by the 

motion of three nodes. Since displacements are common at the three nodal points, the parabolic displacements 

on both sides of the boundary are identical. Hence there will be no tendency for gaps open or for overlap to 

occur. Similar treatment of vb would show that there is no slipping along the interface formed by the boundary. 

For an oblique boundary the manipulations would be more complex but the conclusions identical. Consequently, 

displacements are compatible at all element interfaces. 
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3. Stiffness of the Linear Strain Triangle    

In the strain formula Ɛ = Δ P A
-1

 δ in which the deferential operator matrix  

                                  
𝜕

𝜕𝑥
         0 

                        Δ =     0         
𝛿

𝛿𝑦
    

                                   
𝛿

𝛿𝑦
         

𝜕

𝜕𝑥
      

The polynomial matrix given earlier in 2 from which B = Δ P becomes 

                         

B =  

𝜕

𝜕𝑥
0

0
𝛿

𝛿𝑦

𝛿

𝛿𝑦

𝜕

𝜕𝑥

         1    x    y    x
2
     xy      y

2
        0      0     0     0    0    0  

                             0    0     0     0      0      0         1    x    y    x
2
    xy      y

2
 

  

                    0     1     0     2x     y      0     0     0     0      0     0     0    

=        0     0     0      0      0      0     0     0     1      0     x    2y                   9 

                    0     0      1      0      x     2y    0     1    0      2x    y    0 

 

In the strain equation Ɛ = B A
-1

 δ  

The only variables occur in matrix B and hence are seen to have unit exponent, consequently strain varies 

linearly within the element. With matrix D given by  

 

                             1            𝒗           0 

        D =   
𝐸

1−𝑣
        𝒗            1           0 
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                              0            0          
1−𝑣

2
 

 

All matrices in the stiffness equation K above are known with the incremental volume dv for an element with a 

uniform thickness, t can be taken as dv =t dA, therefor  

K=  𝐴-1  T
  t  ʃ B

T 
D B dA  A

-1
                                                                                   10 

Matrix B contains x and y terms as well as constants therefore when product of  

B
T
 D B is considered, it is evident that we must integrate terms containing constants, x, y x

2
, xy, y

2
. These 

integrations lead to some intricate formulas except in the case where the origin is at the centroid, then the 

solutions are quite simple. Even these are difficult to compute when working with Cartesian coordinates; but by 

means of area coordinates following [1,2], through [7] formulas can be derived. With the use of these formulas, 

we found that 

    ∫ B
T
 D B dA  = 

𝑎𝑟𝑒𝑎 𝑥 𝐸

1−v2
 x  

 

           0       0       0          0          0          0         0        0     0        0        0         0      

           0        1       0         0          0         0         0        0      𝒗       0        0          0       

           0        0       μ         0          0         0         0        μ       0       0       0           0 

           0         0       0     4ꭓꭓ       2ꭕу        0         0        0       0       0      2𝒗ꭓꭕ     4𝒗ꭓу 

           0       0       0     2ꭕу    μꭓꭕ+уу   2ꭕу       0         0        0  2μꭓꭕ  (μ+𝒗)ꭕу  2 𝒗уу 

          0         0        0      0      2μꭕу    4μуу     0         0          0   4μꭕу   2μуу        0 

          0         0       0       0        0          0         0          0         0     0         0            0 

0         0      μ        0          0         0          0        μ       0      0         0             0 11 

          0         𝒗      0        0           0         0        0         0       1      0          0           0     

          0         0      0       0      2μꭓꭕ     4μꭕу       0         0       0   4μꭓꭕ    2μꭕу         0 

          0       0       0    2𝒗ꭓꭕ   (μ+𝒗)ꭕу  2μуу      0        0        0   2μꭕу   ꭓꭕ+μуу     0 
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          0       0       0    4𝒗ꭓу   2𝒗уу       0          0        0         0     0        2ꭕу       4уу  

 

Where 

         μ  = (1 – 𝒗 ) ̸ 2 

        ꭓꭕ  = 1  ̸  12 ( ꭕ1
2

  + ꭕ3
2 
 + ꭕ5

2
 ) 

        ꭕу  =  1/ 12 ( ꭕ1у1  +  ꭕ3у3  + ꭕ5у5 )  

        уу  =  1/ 12 ( у1
2
 + у3

2
  +  у5

2
 )  

We are now able to evaluate the stiffness matrix for any element using the elastic constants of the material, the 

element stiffness and the coordinates of the nodes based on axes having origin at the centroid of the element. 

With A
-1 

evaluated, stiffness matrix is done using equations 5, 10 and11.   

4. Stress Calculation in LST 

The stiffness of each element in turn is accumulated to give the stiffness matrix for the assembly of elements. 

Loads and constraints are applied and solution is run to give all displacements U, taking each element in turn the 

values in δ are extracted from U and used to calculate stress by 

σ  =  DB A
-1

 δ                                                                                                       12 

It is evident that stress is linear within the element or function of x and y coordinated. 

Compared with constant strain triangle CST and for triangles meshed with same size, when compared with 

known solution the LST shows more accurate values given that the analyst is guarding against errors [3] and [4]. 

5. Consistent Load Vector  

When concentrated loads occur, they are handled simply by placing a node at the point of load application and 

taking the load components as known force components. However, a distributed traction acting on an element 

boundary is more difficult to deal with. In the LST (linear strain triangle), a traction on an element edge could 

be treated as concentrated loads at the end nodes by making the tow systems statically equivalent. With the LST, 

there are three nodes on any edge and the principle of static equivalence is not sufficient to determine 

distribution uniquely. The solution to this problem will be found by resorting to energy principles. 

Consider an element boundary such as 1-2-3 in the shown figure, if a horizontal displacement occurs, the edge 

displacement will be parabolic in form and the new edge location may be taken as 1’-2’-3’ as shown by the 

broken lines.  
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The edge displacement is given by 

                                                      a 

    u= ay
2
 +by +c = [y

2     
y   1]       b 

                                              c                                                         

when this displacement takes place, the edge load, p, does work on the system. Over an incremental length of 

edge dy long the work done is  

                                           a 

y 

3 3’ 

2’ 2 

y 
L/

2 

L/

2 

1 
1’ 

x 

P0 

P = P0  + 

sy 

u = ay
2

  + by + 

c 
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    dWp = p u t dy = ( p0 + sy ) [y
2   y   1]   b   t  dy 

                                            c     

                                         

                                             a 

            = [p0y
2
+ sy

3    p0y
 
+sy

2    p0+sy]   b    t dy         

                                             c 

and the work done on the whole edge is 

                                                                              a 

      Wp = ∫  dwp  = t [p0L
3
/12     SL

3
/12    p0L]    b 

                                                                              c 

Consider now a concentrated load system, p1, p2 and p3 which would be used to replace the 

distributed system. These forces move through distances U1, U2 and U3 which can be written  

  

          U1                               u (y=-L/2)                               (-L/2)
 2                 

-L/2                   1             a 

        U2           =          u (y=0)            =               0                  0                 1          b 

        U3                               u (y=L/2)                                               (L/2)
 2              

-L/2            1          c 

 

The work done by the concentrated forces is given by 

 

                                              U1 

    Wp    =  [P1    P2    P3]     U2 

                                U3 

L
2
/4         -L/2         1                     a 

                    =    [P1   P2   P3]        0               0           1                     b 

L
2
/4          L/2         1                     c 

Making the two loading systems equivalent by equating the work done by the systems gives 

                              L
2
/4         -L/2         1           a 

     [P1   P2   P3]        0               0        1           b 

                              L
2
/4          L/2         1           c 

                                                                                                       a 

                                                = t [p0L
3
/12     SL

3
/12     p0L]         b 

                                                                                                       c 

when the right-hand element is removed from both sides and both sides are post multiplied by the inverse of 

- L/2 

L/2 
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                                                 L
2
/4         -L/2         1 

                                                   0                0         1          

                                                L
2
/4          L/2          1 

Which is 

 

                                                 2/L
2
         -4/L

2
         2/L

2
 

                                                 -1/L             0            1/L          

                                                   0             1               0 

We get 

 

                                                                                        2/L
2
         -4/L

2
         2/L

2
 

      [P1   P2   P3]    =   t [p0L
3
/12     SL

3
/12     p0L]     -1/L             0               1/L          

                                                                                         0             1               0 

 

           =  t [p0L/6  - SL
2
/12     -p0L/3  +  p0L     p0L/6  +  SL

2
/12] 

           Hence 

           P1    = (tL/6)( p0  -  SL/2)              

           P2   = (2tL/3)p0 

           P3     = (tL/6)(p0 + SL/2) 

Using p1, p2 and p3 to represent the intensity of the distributed load at points 1,2 and 3, noting that tL is the edge 

area, we get 

         P1   = (1/6)p1    × edge area 

         P2   = (2/3)p2    × edge area 

         P3     = (1/6)p3    × edge area 

These are the components of the consistent load vector. They are statically equivalent to the distributed load and 

also do the same amount of work during a displacement. The work equality was based on an edge displacement 

function which is consistent with the assumed displacement function for all points in the element, hence, the 

designation “consistent load vector”. 

7. Concluding Remarks 

A mathematical formulation of stiffness matrix, stress and a consistent load vector is proved for the linear strain 

triangle element LST simple but efficient in modelling multiple materials with good results compared to the 

simpler CST element and more difficult and time-consuming advanced elements. the formula extracted for 
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consistent load vector for the LST is readily extended for the conical axe-symmetric pressure vessel element for 

convenience, [8] through [13]. 
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