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Abstract 

This paper presents an empirical mode decomposition (EMD) approach for multiple broken rotor bars detection 

in squirrel cage induction motors running at no-load condition, using the resultant magnetic flux density 

measured by a Hall Effect sensor installed between two stator slots of the electrical machine. Usually, the 

traditional motor current signature analysis (MCSA) has produced many cases of false indications related to, 

among other reasons, incorrect speed estimation, operation at low load (low slip) and nonadjacent broken bars. 

This study has investigated the application of the EMD technique in the signal collected from the Hall sensor, in 

order to detect broken rotor bars for an induction motor running at very low slip and subjected to adjacent and 

nonadjacent broken bars. The present approach has been validated from some experiments carried out by a 7.5 

kW induction motor fed by a sinusoidal power supply in the laboratory. 

Keywords: Induction Motor; Fault Diagnosis; Signal Processing. 

1. Introduction 

The squirrel cage induction motors (SCIMs) are rotating electrical machines widely used in the industry 

applications. Usually, this kind of machine is associated to a several types of drives and varying load torque 

conditions, being responsible for a huge amount of energy consumption around the world [1]. The SCIMs are 

robust equipment’s when compared to other rotating machines, but they are subjected to some faults and defects 

in electrical or mechanical parts such as stator windings, bearings and rotor structure.  
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Broken rotor bars are related to 10% - 20% of the total faults in SCIM and this type of failure leads to reduction 

of the motor life cycle, temperature rise and mechanical vibrations [2]. Over the last 20+ years the motor current 

signature analysis (MCSA) method has been applied for detecting broken rotor bars in squirrel cage induction 

motors, using rotor fault frequency sidebands as a fault index [3]. However, although this technique has been 

successful in this field, several works have shown some drawbacks, particularly false indications related to the 

operation of the SCIM at low load condition and due to nonadjacent broken bars. Other researchers [4,5] have 

shown that in case of bars fractured at 90º electrical, no significant variation has observed in the sideband 

frequencies using MCSA also leading to a false negative indications. Moreover, other works have investigated 

new approaches for broken rotor bars detection in case of nonadjacent broken rotor bars [6-9], including SCIM 

running at very low slip conditions. In [8], for example, the authors have combined the use of sideband 

components in the internal and external flux measurements during steady state and transitory conditions. 

Therefore, this work has considered the evaluation of both external stray flux and internal radial airgap flux. It 

should be mentioned that, the authors have applied frequency domain methods to extract sideband components 

as an index fault, which usually has a higher computational cost when compared to some time domain 

techniques.  In [9], the authors has also investigated non-adjacent broken bar cases, but it is necessary looking 

the differences (spectrum analysis) between an actual sample and a reference signal to perform rotor fault 

detection. In this sense, the Empirical Mode Decomposition (EMD) and its variations have shown a good 

potential to detect broken rotor bars for different load torque scenarios [11-16]. In [13], for example, the authors 

have used EMD of stator current to detect broken bars at ¾ and ½ load torque conditions. This work did not 

evaluate the SCIM running at low load conditions or considering nonadjacent rotor fault cases. In [14], the 

authors have implemented complete ensemble empirical mode decomposition (CEEMD) in field programmable 

gate array (FPGA), in order to monitor broken bars in induction motors, but this work also did not address 

nonadjacent fault cases. Some researchers have shown the great potential of external or internal magnetic flux 

analysis, in order to evaluate broken rotor faults [17-21]. For large induction machines, for example, the use of a 

Hall Effect sensor installed near the air gap has been demonstrated good results and a great potential for broken 

rotor bars detection. Based on the aforementioned, this paper proposes an EMD approach for multiple broken 

rotor bars detection in SCIM at no-load condition, using as a fault index only the number of zero crossings of 

the intrinsic mode functions extracted from each operational condition. The EMD method has been applied in 

the signal sampled from a Hall Effect sensor installed between two stator slots of the machine. The experimental 

results have shown a good performance for rotor fault detection, particularly at no-load condition and 

considering nonadjacent cases that usually leads to false indications using MCSA method. 

2. The Fundamentals of the Empirical Mode Decomposition 

As cited by [1,2], the empirical mode decomposition (EMD) is a processing method proposed for analyzing a 

complex, stationary or nonstationary signal. In this sense, EMD performs a decomposition of the original signal 

into a finite series of simpler data sets called intrinsic mode functions (IMFs). As also described by [1], the 

extrema of the original signal 𝑥(𝑡) must be identified and the local maxima is then interpolated by a cubic spline 

as the upper envelope. Thus, the same calculus is carried out with the local minima to produce the lower 

envelope. In the next step, we should designate the mean of the upper and lower envelopes called as m1 and then 

we have to calculate the difference h1 between the original signal 𝑥(𝑡) and 𝑚1 , being this value the first 
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component as shown by equation 1. 

ℎ1 = 𝑥(𝑡) − 𝑚1            (1) 

In the next step, we should verify if  ℎ1 satisfies the conditions of the IMF or a criterion to define an IMF, in  

order to take it as the first IMF (IMF1) of 𝑥(𝑡). Those conditions, as cited by [2], are related to the fact that in 

the whole dataset, the number of extrema and zero crossings (ZCs) must be the same or should differ at most by 

one, and at any point, the mean value of local maxima and local minima envelopes is zero. A new IMF is 

calculated by repeating the whole procedure dealing with residue of the original signal as a new signal. In the 

present study, the IMF1, IMF2, IMF3, IMF4, IMF5 and IMF6 have been calculated for the signal sampled by a 

Hall sensor installed two stator slots of the SCIM. 

 

Figure 1: EMD of Hall Effect signal of an induction motor 

3. Materials and Methods 

In this section, we describe the experimental setup and the methodology applied for broken rotor bars detection 

using EMD approach for distinct operational scenarios. 

3.1. Methodology 

The present methodology is shown in Figure 2. It is possible to note the Hall Effect sensor installed inside the 

machine. The air gap magnetic flux density is measured and in case of broken rotor bars the disturbances are 

evaluated applying the EMD method. It should be noted that the signal obtained from the Hall sensor is a 
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sinusoidal waveform and rotor faults are associated to some distortions in the peak value, such as cited by other 

studies [15-17]. After the signal sample process, EMD has been carried out, using Matlab© software to extract 

IMFs components and evaluate the number of ZCs. The differences between the number of ZCs is used as an 

index fault for different rotor fault conditions, such as a health motor and an electrical machine with adjacent 

and nonadjacent broken rotor bars. In the present case, the induction motor has been fed by a sinusoidal supply 

and at no-load torque. 

 

Figure 2: Proposed Methodology 

3.2. Experimental Setup 

 

Figure 3: Experimental setup 
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The experimental tests have been carried out in a laboratory using an induction motor particularly manufactured 

for rotor fault studies. Figure 3 shows the main resources used for running each operational condition. The tests 

have been performed on a 7.5 kW, four pole and three-phase induction motor with a rotor cage made with 38 

rotor bars. This rotor allows the user to connect the rotor bars easily to the end-ring through bolts and nuts. The 

signal sampled from the Hall sensor was collected using a PC computer and a USB Digital Oscilloscope 

(Hantek – model HT6022BE). This equipment has a bandwith in 20 MHz and maximum real-time sample rate 

at 48 MS/s. It should be mentioned that the Hall Effect sensor has been connected to a Hall transducer with a 

conversion rate at 1T/V or 0.1T/V and as cited before Hall sensor was installed inside the machine and between 

two stator slots.  

It is important to also mention that the SCIM has an internal braking system (Foucault brake) capable of 

applying different mechanical loads to the motor shaft using a DC power supply. 

4. Experimental Results and Discussion 

For experimental evaluation purposes, the present research has carried out distinct tests using SCIM running at 

several operational conditions. The following subsections show the use of the present method for the induction 

motor running from healthy up to different damaged cases. For each scenario, the EMD method was performed 

using a time window of 4 s and total samples of 40.000 from the Hall sensor signal. In the present study, two 

index faults have been evaluated, such as the arithmetical sum of IMF2 and IMF3 components and the sum of 

IMF3 and IMF4. In [13], for example, the authors applied IMF2 + IMF3 for stator current transitory analysis 

and IMF3 + IMF4 for current steady state evaluation. It should be noted that in [13] the authors have tested the 

induction motor running at ¾ and ½ load, thus, not considering low load operation. In the present method, the 

authors have tested the index fault for the SCIM running particularly at no load condition, although other load 

conditions have been also performed. In the next subsection, the number of zero crossings using IMF3+IMF4 

has been evaluated as a fault index for broken rotor bars detection. 

4.1. Number of Zero Crossings using IMF3+IMF4 as fault index 

The first experimental setup has been carried out considering a healthy motor and rotor with adjacent broken 

bars. The induction motor has been tested for low load conditions. The rated slip of the SCIM is 3.4%. As 

shown in Table 1, the number of zero crossing has demonstrated a clearly difference between a healthy rotor and 

one with broken rotor bars. However, in this case it should more complicated to distinguish between one broken 

bar (1BB) and more than one (2BB and 4BB). In addition, we have performed the same analysis for broken 

rotor bars separated by 90º (bars numbered as 1 and 11). As cited by other works [4, 5], Fig. 4a shows that it is 

not possible to detect this damaged condition using the traditional method MCSA at low slip (slip  = 1%), since 

the left sideband frequency is canceled out. In this case, the sideband frequencies (left and right components) are 

only apparent for a higher load torque (slip of 2.55%), as shown in Fig. 4b. 
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Table 1: Number of Zero Crossings using IMF3+IMF4 

Index Fault  Healthy rotor 1BB 2BB 4BB 

IMF3+IMF4 

(no-load) 

                    2556           2006         1903                     1980 

IMF3+IMF4 

(slip of 1%) 

                    2719                                             2491                            2352                   2409 

IMF3+IMF4 

(slip of 

1.88%) 

                    2996           2122           2176       2566 

 

 

(a) 

 

(b) 

Figure 4: MCSA for SCIM with two non-consecutive broken bars (1 and 11) a) motor running at slip of 1% and 

b) motor running at slip of 2.55% 

This research has also evaluated the use of EMD method to extract the zero crossings number for SCIM running 

at no-load condition and for a time window of 1 s (10000 samples). Table 2 shows the values found in five 

experiments (Exp1 to Exp5), being possible to note the differences between a healthy condition and other with 

broken bars separated by 90º. In the next subsection, the number of zero crossings have been evaluated using 

IMF2 + IMF3 as an index fault for adjacent and nonadjacent broken bars. 

Table 2: Number of Zero Crossings using IMF3+IMF4 for broken bars separated by 90º 

Index Fault  Exp1 Exp2 Exp3 Exp4 Exp5 Average 

IMF3+IMF4 

(healthy 

rotor) 

                  71           60         66                     70     65    66.4 

IMF3+IMF4 

(broken bars 

1 and 11) 

                  50           40         43                     41     45    43.8 
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4.2. Number of Zero Crossings using IMF2+IMF3 as fault index 

In this second experimental setup, the authors have investigated the use of zero crossings of IMF2 + IMF3 for 

adjacent and nonadjacent broken rotor bars detection. The first dataset has been tested for Hall sensor signals 

sampled in a time window of 4 s (40000 samples and sample frequency = 10kHz). Table 3 shows the ZCs 

number for each condition and the differences between the fault index is more significant when compared to the 

previous case using IMF3 + IMF4, for example. 

Table 3: Number of Zero Crossings using IMF2+IMF3 

Index Fault  Healthy rotor 1BB 2BB 4BB 

IMF2+IMF3 

(no-load) 

                    5536           5142         4983                     4949 

IMF2+IMF3 

(slip of 1%) 

                    5139                                             4872                            4848                  4820 

IMF2+IMF3 

(slip of 

1.88%) 

                    5570           5284           4982     5056 

In Table 4, the number of zero crossings also shows that the application of the present approach is capable of 

detecting broken bars separated by 90º, even for SCIM running at no-load condition. In Fig. 5, it is possible to 

observe IMF2, IMF3 and IMF4 components for a healthy rotor and broken rotor bars separated by 90º. 

Table 4: Number of Zero Crossings using IMF2+IMF3 for broken bars separated by 90º 

Index Fault  Exp1 Exp2 Exp3 Exp4 Exp5 Average 

IMF2+IMF3 

(healthy 

rotor) 

                  160           152         145                     157     167    156.2 

IMF2+IMF3 

(broken bars 

1 and 11) 

                  115           96         114                    100     102    105.4 

 

Figure 5: IMFs components for a healthy rotor and a damaged one with separated broken bars (1 and 11) 
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Finally, we have performed additional tests for SCIM running with nonadjacent broken rotor bars distributed for 

distinct magnetic poles. Fig. 6 clearly shows that the present approach is capable of identifying a healthy rotor 

using NZC, when compared to damaged cases. It should be mentioned that the SCIM was running at no load 

torque for each operational scenario.  

 

Figure 6: Number of zero crossings for different operational scenarios for motor running at no-load conditions 

The present method has shown that the use of IMF2 + IMF3, or IMF3 + IMF4, as a fault index has a good 

potential not only to detect broken rotor bars, but also to evaluate the fault severity. More particularly, the use of 

IMF2+IMF3, as shown in Table 3, has highlighted that the number of zero crossings at no-load condition can be 

used to distinguish between a healthy motor and cases with 1BB, 2BB or 4BB. It should be noted that number of 

zero crossings decreases as the number of broken bars increases, for example. 

5. Conclusion 

This paper proposes the use of empirical mode decomposition (EMD) for multiple broken rotor bars detection, 

using the signal sampled from a Hall Effect sensor installed inside of the SCIM. This application is suitable for 

large induction motor cases, such as cited by other works [19, 21]. More particularly, the present approach has 

demonstrated that the number of zero crossings is able to identify a healthy rotor condition when compared to a 

damaged structure with broken bars. The experimental results have shown that the use of IMF2+IMF3 as a fault 

index provides a better rotor evaluation in view of the use of IMF3+IMF4, even for SCIM running at no-load 

condition and for broken bars separated by 90º electrical. Therefore, for maintenance purposes, the present study 

has a good performance for broken bars diagnosis considering that the SCIM could be tested under no-load 

condition, being possible to identify not only one broken bar but also different nonadjacent cases. It is important 

to mention that the present study did not address the rotor fault detection for SCIM fed by an inverter or in cases 

wherein the motor is subjected to oscillating loads. Finally, the authors are investigating the implementation of 

the present method in an embedded low cost hardware for developing an alternative tool in the future. 
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