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Abstract 

Pairwise 3D point cloud registration derived from Terrestrial Laser Scanner (TLS) in static mode is an essential 

task to produce locally consistent 3D point clouds. In this work, the contributions are twofold. First, a non-

iterative scheme by merging the SIFT (Scale Invariant Feature Transform) 3D algorithm and the PFH (Point 

Feature Histograms) algorithm to find initial approximation of the transformation parameters is proposed. Then, 

a correspondence model based on a new variant of the ICP (Iterative Closest Point) algorithm to refine the 

transformation parameters is also proposed. To evaluate the local consistency of the pairwise 3D point cloud 

registration is used a point-to-distance approach. Experiments were performed using seven pairs of 3D point 

clouds into an urban area. The results obtained showed that the method achieves point-to-plane RMSE (Root of 

the Mean Square Error) mean values in the order of 2 centimeters. 
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1. Introduction  

In static mode, TLS (Terrestrial LASER Scanner) is a tool capable of providing 3D point clouds with high level 

of detail, quickly, accurately and safely. Given the technological advances in this field, TLS has been 

increasingly used in topographic surveys of the physical surface of the Earth for several of applications, such as 

mapping, surveillance and emergency managements, navigation, positioning, robotics, forensics, Earth science, 

virtual tours, crisis management, modeling, infrastructure inspections, urban design, archaeology, Civil 

Engineering and others. 

Due to the scanning characteristics of the TLS, the complete overlay of an object present on the physical surface 

should be done with different views. For instance, consider a TLS device (𝑆 ) that moves in an internal 

environment, such as the hallway of a building. At each position station (𝑆1, … , 𝑆𝑛) the sensor collects thousands 

of 3D points from a small part of that environment. During the data acquisition, an accumulation of errors 

generated by sensor uncertainty is introduced and each 3D point cloud is obtained in an independent Local 

Referential System (LRS). The result is a set of 3D point clouds with angular misalignment and linear 

displacement between each other. Consequently, the registration of each pair of 3D point clouds (pairwise 3D 

point cloud registration) and the materialization of a unique reference system for the data set is a fundamental 

task to create a complete and accurate 3D model of the mapped surface.  

In the specific literature, the pairwise 3D point cloud registration feature-based is divided into two steps: (1) the 

primitive detection and automatic establishment of the feature correspondences; (2) the estimation of the 

transformation parameters (usually a rotational matrix R and a tridimensional translation vector t).In [1] the first 

stage is classified into two categories: a) correspondence models based on point-to-plane approaches; and b) 

surface-based matching models.  

According to [21], plane-based approaches provide better accuracy in estimates of transformation parameters. 

Moreover, conforming to [14], point-to-plane or plane-to-plane approaches are less susceptible to noise, besides 

being easily found in anthropic environments (man-made) and are robust to environments with homogeneous 

surfaces, such as facades. An iterative approach based on point-to-plane correspondence models are proposed in 

[23]. First, the algorithm selects defined points from the Newton-Raphson technique and calculates the normal 

vectors related to each of them. The determination of the correspondences is performed by an iterative process 

and the transformation parameters are also estimated in two steps. In the first one, the components of the 

rotational matrix are determined with quaternions properties. In the second one, the translation values are 

determined by LSM (Method of Least Squares) where the rotation parameters are fixed in the solution.  

A plane-based correspondence from the surface curvature values analysis is performed in [5]. The 

transformation parameters are estimated by LSM and refined with Levenberg-Marquart method. In [16], the 

RANSAC algorithm (FISHER and BOLLES, 1981) is used for the plane extraction followed by a directions and 

angles (formed between their normal vectors analysis) strategy for automatic establishment of plane-to-plane 

correspondences. The estimation of transformation parameters is also performed in two steps. However, planes 

are common only in man-made environments, making this approach unadvised in natural environments or in 
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environments with a high degree of symmetry between the objects present in the scene.  

Besides the unpredictably of the objects available in the mapped environment, the widest used algorithm in 

literature for surface-based approaches still is the ICP (Iterative Closest Point)[17].Basically, the ICP algorithm 

is done in two stages: First, the algorithm establishes pseudo-matches between point cloud pairs. Then, the sum 

of the square of the distances between these pseudo-matches is iteratively minimized. And commonly, the 

estimated values of rotation (R) are used to calculate the translation parameters (t). This is done repeatedly until 

the algorithm reaches a convergence criterion. However, the ICP algorithm can converge to a local minimum 

solution when the point cloud pairs present a low rate of overlap [22]. Furthermore, the ICP depends on 

approximate initial values and has a high computational cost. Thus, in literature it is usually necessary to find 

initial approximations of the transformation parameters and, consequently, refine the transformation parameters 

with the ICP. This pairwise registration approach is known as coarse-to-fine [9]. 

The high computational cost problem of the ICP algorithm is overcome by [3] employing the k-d Tree technique 

in the correspondence step. To solve the same dependence on initial values of the ICP, [13], define initial 

alignments of the sensor using primitives extracted from the 3D point clouds pairs. The ICP-RGBD algorithm is 

developed in [18] for pairwise 3D point cloud registration derived from RGB-D data. First, the points in the 

RGB image are detected and their matches are established using the Scale Invariant Feature Transform (SIFT) 

2D algorithm, proposed by [8]. Then, the image points are associated with their respective 3D points derived 

from the depth image of the RGB-D sensor. The transformation parameters are also refined with the ICP 

algorithm.  

A local alignment method for pairwise 3D point cloud registration called 4-Points Congruent Sets (4PCS) is 

introduced in [6]. The alignment process occurs from the determination of the set with the best matches. The 

4PCS method is adapted by [19] with the novel K-4PCS aiming to reduce the algorithm flow time processing 

(inferred as computational cost). The authors propose the extraction of key points from the Dog (Difference of 

Gaussians) operator, whose resamplings are made from structures called VOXELS (VOlume X ELementS). The 

transformation parameters are obtained by approximation and later refined using the ICP, i.e. in a coarse-to-fine 

mode. 

The pairwise 3D point cloud registration methods also can be characterized by the rotation parameters 

estimation approaches. In [15] the rotation matrix is estimated by SVD (Singular Value Decomposition). Once 

in[4], unit quaternions are used for the rotational matrix components representation. According to [10], both 

SVD and quaternions uses approximation models to make the rotation estimation. 

The main challenge in pairwise 3D point cloud registration by TLS, in static mode, is related to the low overlap 

percentage between pairs of 3D point clouds, since the operator seeks to reduce the in loco operational cost. 

Typically, TLS in static mode is not supported by additional sensors, such as GNSS/INS systems, so the 

estimation of parameters is never simplified, once does not have a very initial guess for the transformation 

parameters. Besides the amount of 3D point cloud pairs necessary to ensure the complete covering of the region 

mapped. With the motivation of producing locally consistent 3D point clouds for represent Earth’s physical 
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surface, two contributions will be discussed in this work: 

 A non-iterative strategy of initial approximation of 3D point cloud pairs; and 

 A novel correspondence method based on an ICP algorithm new variant. 

2. Proposed method 

This work aims to deal with the pairwise registration problem of 3D point cloud obtained by a static TLS to 

build locally consistent 3D models. The proposed method is divided into four main tasks, as shown in Figure 1. 

 

Figure 1: Architecture of the proposed method 

The first task is to detect and remove outliers present in the 3D point clouds. The second task is to reduce the 

data to a sparse set of points and calculates the initial approximate values for the 3D cloud pair. In task three, the 

3D point cloud pairwise transformation parameters are estimated using a point-to-plane correspondence model 

proposed in this work. Finally, the analysis of local consistency (task four) of each pair of 3D point clouds is 

performed by a point-to-plane distance criterion. The expected result is locally consistent sets of 3D point clouds 

from the mapped environment. The steps of the proposed method are discussed below. 

2.1. Detection and Removal of Outliers 

The first task of the proposed method is automatically to detect and remove outliers present in the 3D point 

cloud pair. This is done using the Statistical Outlier Removal (SOR) algorithm proposed by [20]. Outliers are 

defined as observations in a data set that are inconsistent with the rest of this data set, usually generated by 

specular surfaces such as glass and metals, or also arising from the transition between two surfaces (edges and 

occlusions). 

 

Figure 2: Process to find the nearest neighbor using Statistical Analysis. 
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Due to data acquisition characteristics, the transformation parameters estimation step is extremely sensitive to 

outliers. Therefore, these outlier removal tasks dramatically reduce computational cost. Hence, the most 

intuitive way to detect and remove outliers is by using neighborhood analysis of a random point present in the 

3D point cloud, as proposed by [20], namely: a) For each point 𝑝𝑖  ∈  𝛮, firstly, the average distance 𝑑 from its k 

nearest neighbors is calculated; b) Then, the average distribution of the points 𝜇𝑑 and their standard deviation 𝜎𝑑 

are estimated, with the objective of keeping in the point cloud N  the points whose distance 𝑑 to the nearest 

neighboring point is similar to the other points; c) Thus, the remaining point cloud 𝛮∗ is determined as follows: 

𝛮∗ = {𝑝𝑖
∗ ∈ 𝛮|(𝜇𝑘 − 𝛼 ∙ 𝜎𝑘) ≤ 𝑑𝑘 ≤ (𝜇𝑘 + 𝛼 ∙ 𝜎𝑘)} (1) 

where 𝛼 is the restrictive density factor. Figure 2 shows the steps described above. 

2.2. Coarse Pairwise 3D Point Cloud Registration 

Usually, the TLS sensor operator seeks to optimize the work by installing TLS in positions that provide low 

overlap between point cloud pairs (30% to 40%), making it difficult to solve the ICP algorithm during the 

estimation of transformation parameters. In this work, a combination of the 3D SIFT algorithm and the PFH 

algorithm is proposed to find initial transformation parameters between the 3D point cloud pairs. The 3D SIFT 

algorithm is used to extract extreme points in the 3D point cloud pairs and the PFH algorithm builds local 

descriptors  invariant to scale, rotation and change of view, in the form of representative neighborly relations 

histograms between the extreme points and their respective normal vectors for the automatic matching.  

In 3D SIFT, the space-scale of a 3D point cloud is defined as a 4D function 𝐿(𝑥, 𝑦, 𝑧, 𝜎) obtained by Gaussian 

Kernel 𝐺(𝑥, 𝑦, 𝑧, 𝜎)convolution with a point cloud 𝑁(𝑥, 𝑦, 𝑧), as follows [12]: 

𝑁(𝑥, 𝑦, 𝑧, 𝜎) = 𝑁(𝑥, 𝑦, 𝑧)𝐺(𝑥, 𝑦, 𝑧, 𝑘 ∙ 𝜎) (2) 

where ⊗ is the convolution operator, σ the scale change in G  (parameter defining the smoothing factor) and 

𝐺(𝑥, 𝑦, 𝑧, 𝑘 ∙ 𝜎) =
1

(√2𝜋𝑘∙𝜎)3
𝑒

−(𝑥2+𝑦2+𝑧2)

2(𝑘∙𝜎)3 . Figure 3 shows an example of space-scale in 3D. 

 

Figure 3: Example of space-scale in 3D. The blue cube represents a voxel. 
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In the sequence, Gaussian Difference calculations (Difference of Gaussians - Dog) are performed for each 

octave in the space-scale. This function is separated by a constant scale (𝑘) and the keypoints in the 4D space-

scale are detected as local extremes (maximum or minimum) of the N differences in nearby scales defined by 

𝑖 ∈ [0, 𝑠 + 2], as follows [12]: 

𝐷𝑜𝐺(𝑥, 𝑦, 𝑧, 𝑘𝑖 ∙ 𝜎) = 𝑁(𝑥, 𝑦, 𝑧, 𝑘𝑖+1 ∙ 𝜎) − 𝑁(𝑥, 𝑦, 𝑧, 𝑘𝑖 ∙ 𝜎) (3) 

The local extreme points can be detected for each 𝐷𝑜𝐺(𝑥, 𝑦, 𝑧, 𝑘𝑖 ∙ 𝜎) obtained. This procedure is based on 

comparing all voxels of the current 𝐷𝑜𝐺(𝑥, 𝑦, 𝑧, 𝑘𝑖 ∙ 𝜎) with their neighbors voxels according to the 

correspondent neighbors voxels in 𝐷𝑜𝐺(𝑥, 𝑦, 𝑧, 𝑘𝑖+1 ∙ 𝜎) and 𝐷𝑜𝐺(𝑥, 𝑦, 𝑧, 𝑘𝑖−1 ∙ 𝜎)resulting 80 neighbors voxels 

in total (27 (𝑖 + 1) + 26 (𝑖) + 27 (𝑖 − 1) = 80). 

The extreme points must be located and if they are unstable, infers being discarded. The exact location of the 

extreme points is determined by adjusting a 3D quadratic function. The 𝐷𝑜𝐺 function has a robust response 

along the edges, making the points unstable. This implies ill-defined extremes that exhibit large principal 

curvature along the edges, but with small curvature in their perpendicular direction. The principal curvatures are 

determined, basically, through the Hessian 3x3 (𝐻) matrix, as follows [7]: 

𝐻(𝑥̂, 𝜎)  = [𝑆𝑥𝑥(𝑥̂, 𝜎)𝑆𝑥𝑦(𝑥̂, 𝜎)𝑆𝑥𝑧(𝑥̂, 𝜎)𝑆𝑦𝑥(𝑥̂, 𝜎)𝑆𝑦𝑦(𝑥̂, 𝜎)𝑆𝑦𝑧(𝑥̂, 𝜎)𝑆𝑧𝑥(𝑥̂, 𝜎)𝑆𝑧𝑦(𝑥̂, 𝜎)𝑆𝑧𝑧(𝑥̂, 𝜎)]  (4) 

where: 

𝑆𝑥𝑥(𝑥̂, 𝜎) = 𝐷𝑜𝐺(𝑥, 𝑦, 𝑧, 𝑘𝑖 ∙ 𝜎) ⨂ 
𝜕2

𝜕𝑥2 𝐺(𝑥, 𝑦, 𝑧, 𝜎). Calculating 𝐻(𝑥̂, 𝜎) on multiple scales and searching for 

local maxima, a set of extreme points 𝑋 can be obtained, as follows [7]: 

𝑋 = 𝑎𝑟𝑔𝑥,𝜎|𝑑𝑒𝑡(𝐻(𝑥̂, 𝜎))|   (5) 

With the extreme points detected by the 3D SIFT algorithm, the normal vectors𝑛⃗ 𝑖 of all extreme points 𝑋𝑖  ∈

𝛮∗must be estimated. In this case, a plane is represented by a point 𝑋 (extreme point) in 𝑅3 and a normal vector 

𝑛⃗ , and, the distance from a point 𝑝𝑖  ∈ 𝛮∗ to the plane is defined as 𝑑𝑖 = (𝑝𝑖 − 𝑋)𝑛⃗ . Since there is a set of 

neighbors points (𝑝𝑖) circumscribed in a circle (𝑠𝑣𝑖) of radius 𝑟1, the solution for 𝑛⃗  is obtained by analyzing the 

eigenvalues and eigenvectors of the covariance matrix 𝐶 ∈ 𝑅3𝑥3 of  𝑠𝑣𝑖 , as follows: 

𝐶 =
1

𝑚
∑

𝑚

𝑖=1

𝑊𝑖(𝑝𝑖 − 𝑋)(𝑝𝑖 − 𝑋)𝑇 , 𝐶𝑉⃗ 𝑗 = 𝑗𝑉⃗ 𝑗 , 𝑗 ∈ {0,1,2} (6) 

where 𝐶  is a semi-definite positive symmetric matrix and its eigenvalues are real numbers 𝑗 ∈ ℝ . The 

eigenvectors 𝑉⃗ 𝑗 correspond to the principal components. If 0 ≤ 0 ≤ 1 ≤ 2, the eigenvector  𝑉⃗ 0 corresponding 

to the eigenvalue 0 is an approximation of  𝑛⃗ = {𝑛𝑥, 𝑛𝑦 , 𝑛𝑧} or -𝑛⃗ . The 𝑊𝑖 term corresponds to the weighting of 

𝑝𝑖  and can be found as a function of the theoretical precision of its three-dimensional coordinates. 
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In the sequence, the k neighbors of 𝑋are searched. For each pair of points (𝑋, 𝑝𝑘) three angles (𝛼, 𝜙, 𝜃) that 

represent the local descriptor attributes obtained by the relation between each corresponding point to the normal 

𝑛⃗ 𝑋 and 𝑛⃗ 𝑘are calculated. However, a LRS must be defined in 𝑋 using the Equation (7). The Figure 4 shows the 

LRS and all attributes of the local descriptor. 

 

Figure 4: Attributes of the local descriptor and the LRS in 𝑋. 

{

𝑢 = 𝑛⃗ 𝑋

𝑣 = 𝑢 ⨯
(𝑝𝑘 − 𝑋)

‖𝑝𝑘 − 𝑋‖2

𝑤 = 𝑢 ⨯ 𝑣

 (7) 

The difference between the normal 𝑛⃗ 𝑋 and𝑛⃗ 𝑘can be determined as follows: 

𝛼 = 𝑣 × 𝑛⃗ 𝑘

 = 𝑢 ×
(𝑝𝑘 − 𝑋)

‖𝑝𝑘 − 𝑋‖2

   𝜃 = arctan (𝑤 × 𝑛⃗ 𝑘, 𝑢 × 𝑛⃗ 𝑘) 

 (8) 

The quadruple <𝛼, , 𝜃,
(𝑝𝑘−𝑋)

‖𝑝𝑘−𝑋‖2> is calculated for each pair of points 𝑋and 𝑝𝑘  for 𝑠𝑣𝑖 , reducing from 12 

attributes (𝑥𝑋, 𝑦𝑋, 𝑧𝑋 , 𝑛𝑥
𝑋, 𝑛𝑦

𝑋, 𝑛𝑧
𝑋, 𝑥𝑝𝑘, 𝑦𝑝𝑘 , 𝑧𝑝𝑘, 𝑛𝑥

𝑝𝑘 , 𝑛𝑦
𝑝𝑘, 𝑛𝑧

𝑝𝑘)  to 4 attributes (𝛼, , 𝜃,
(𝑝𝑘−𝑋)

‖𝑝𝑘−𝑋‖2) . To 

create the local descriptor of 𝑠𝑣𝑖 , the set of all < 𝛼𝑖 ,  
𝑖
,  𝜃𝑖> tuples is combined into a histogram. In this process, 

the distance measurements ‖𝑝𝑘 − 𝑋‖2   are divided into 𝑞  bars of equal size creating a three-dimensional 

histogram with the total of 𝑞3  points ( 𝐻𝑖𝑠𝑡) . Since the three attributes defined in the quadruple are 

measurements of angles between normal vectors, their values must be normalized to the same interval in a 

trigonometric circle. Figure 5 shows an example of a PFH histogram generated using 45 subdivisions to 𝛼, , 𝜃, 

plus 45 subdivisions of 
(𝑝𝑘−𝑋)

‖𝑝𝑘−𝑋‖2 and 128 subdivisions for a component calculated as a function of the point of 

view which the angle histogram forms with each point normal, resulting in a vector of 308-byte values. 
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Figure 5: Example of PFH histogram. (a) 3D point cloud with several extreme points (b) highlighting of 

extreme points (c) histogram (d) voxel 

In the 3D point cloud shown in Figure 5a, the extreme points in green and a selected region, presented in more 

detail in Figure 5b, with two histograms in Figure 5c, accounting for the number of occurrence of the each 

extreme point characteristics. On the other hand, Figure 5d, illustrates the orientations and magnitude of some 

extreme points. Given a set of histograms (local descriptors) in the filtered 3D reference point cloud 𝐻𝑖𝑠𝑡𝑀∗ and 

a set of histograms in the filtered 3D search point cloud 𝐻𝑖𝑠𝑡𝑠𝑒𝑎𝑟𝑐ℎ∗, the metric used (𝑑(𝐻𝑖𝑠𝑡𝑀∗, 𝐻𝑖𝑠𝑡𝑠𝑒𝑎𝑟𝑐ℎ∗))  

to establish the correspondence between the extreme points is given by: 

𝑑(𝐻𝑖𝑠𝑡𝑀∗, 𝐻𝑖𝑠𝑡𝑠𝑒𝑎𝑟𝑐ℎ∗) =  

∑ (𝐻𝑖𝑠𝑡𝑀∗(𝑖) − 𝐻𝑖𝑠𝑡𝑀∗̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑖))(𝐻𝑖𝑠𝑡𝑠𝑒𝑎𝑟𝑐ℎ∗(𝑖) − 𝐻𝑖𝑠𝑡𝑠𝑒𝑎𝑟𝑐ℎ∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑖))𝑖

√(𝐻𝑖𝑠𝑡𝑀∗(𝑖) − 𝐻𝑖𝑠𝑡𝑀∗̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑖))
2
(𝐻𝑖𝑠𝑡𝑠𝑒𝑎𝑟𝑐ℎ∗(𝑖) − 𝐻𝑖𝑠𝑡𝑠𝑒𝑎𝑟𝑐ℎ∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑖))

2
 

(9) 

where,  𝐻𝑖𝑠𝑡̅̅ ̅̅ ̅̅ =
1

𝑞𝑞
∑ 𝐻𝑖𝑠𝑡(𝑗)𝑗 , 𝑞𝑞 is the total number of histograms 𝐻𝑖𝑠𝑡(𝑗) in the reference or 3D search point 

cloud, respectively. Then, the Equation (09) is applied to every descriptor in order to find all pairs of 

corresponding descriptors. Consequently, the correspondences between the histograms are automatically 

established and an initial approximation of the 3D point cloud pair is performed using a 3D affine 

transformation. 

The main advantage of the scheme developed in this step of the method is to avoid the iterative process by 

searching for matches using the proposed point-to-plane correspondence model. The initial approximations also 

prevent the proposed model from suffering of local minimums in the estimation of the rotation ( 𝑅 ) and 

translation (𝑡) parameters, in the step of pairwise 3D point cloud registration. 
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2.3. Point-to-Plane Correspondence Model for Pairwise 3D Point Cloud Registration 

In this step of the method, a correspondence model based on a point-to-plane approach for pairwise 3D point 

clouds registration is proposed. The main characteristics of this model is the non-iterative correspondence step 

for estimating 𝑅 and 𝑡. The proposed solution is based on the dissociation of the parameters of rotation (𝑅) and 

translation (𝑡) with lower computational cost. Firstly the rotation parameter (𝑅) is calculated and then the 

translation parameter (𝑡) is estimated without the need for iterations as done in the ICP algorithm. 

Given a pair of point clouds ℵ′  (reference cloud) and ℶ′ (search cloud), the RANSAC algorithm is used to 

extract planes in them. For this task, the algorithm randomly selects a minimum set of points (𝑛) belonging to 

the data set ℵ for generating candidate solutions and estimating the parameters of a model, where  ℵ ≥ 𝑛. Next, 

a description of the algorithm [2]: 

a) Given a model that requires a minimum of 𝑛 observations (subset 𝑆1), with ℵ ≥ 𝑛 for the estimation of 

a mathematical model 𝑀1 from which a subset of observations 𝑆1
∗ is determined, consisting of all points of ℵ 

that have an error equal to or less than one tolerable error (𝑒) pre-established. This group is known as Consensus 

and consists of 3D points called inliers. Those that remain above the tolerable error, are considered as outliers 

points; 

b) If  𝑆1
∗ is greater than a threshold τ (estimated as a function of the outliers points present in the set ℵ), a 

new mathematical model 𝑀1
∗ will be determined, based on the application of the LSM. If the iteration (𝑘) is not 

over, step (a) is returned; 

c) If  𝑆1
∗ it does not appear below the threshold τ, the algorithm randomly searches for a new subset (𝑆2), 

starting the process again.  

 

Figure 6: Conceptual basis of the proposed point-to-plan correspondence model. 

Since initial approximations between ℵ′ and ℶ′ were determined with SIFT3D + PFH, it can be assumed that for 

a given point 𝑝𝑟, belonging to the plane extracted 𝜋𝑅  at ℵ′, its correspondent point p𝑐 ∈ ℶ′ can be calculated 
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through the intersection between the straight line, which is formed by the orthogonal projection of the point p𝑅 

and the plane 𝜋𝑐 ∈ ℶ′, as shown in Figure 6.In practice, the corresponding point p𝑐  and p𝑅  is calculated as 

follows [11]:  

𝑛𝑐
𝑇𝑝𝑐 = 𝑑𝑐    

𝑝𝑐 = 𝑝𝑟 + 𝑠𝑛𝑐 

(10) 

where 𝑠 denotes a scalar, 𝑑𝑐 is the distance from the origin of the referential system to the current plane at ℶ′ and 

𝑛𝑐 is the normal vector of the plane 𝜋𝑐 at ℶ′. 

To find the coordinates 𝑝𝑐, is necessarily just calculate the scalar 𝑠. This is done by replacing the first (𝑛𝑐
𝑇𝑝𝑐 =

𝑑𝑐) with the second term (𝑝𝑐 = 𝑝𝑟 + 𝑠𝑛𝑐) of Equation (11), as follows [11]: 

{
𝑠 = 𝑑𝑐 − 𝑛𝑐

𝑇𝑝𝑟

𝑝𝑐 = 𝑝𝑟 + (𝑑𝑐 − 𝑛𝑟
𝑇𝑝𝑟)𝑛𝑐

 (11) 

In this variation of the ICP algorithm, the correspondence between the primitives is established without the need 

for iterations. For each point belonging to the plane 𝜋𝑐 at ℵ′, a correspondent point 𝑝𝑐
𝑖  (i = 1, ..., number of 

points in 𝜋𝑅) is calculated and a new normal vector 𝑛𝑐
𝑛𝑒𝑤  to the plane 𝜋𝑐 ∈ ℶ′ is estimated. To validate the 

establishment of point-to-plane correspondence, the angle between the vectors 𝑛𝑇 and 𝑛𝑐
𝑛𝑒𝑤 must be less than a 

pre-established threshold (ϟ), as follows: 

{
 𝑣𝑎𝑙𝑖𝑑𝑜, 𝑠𝑒 𝑎𝑟𝑐𝑐𝑜𝑠 (

|𝑛𝑇 ∙ 𝑛𝑐
𝑛𝑜𝑣𝑜|

‖𝑛𝑇‖‖𝑛𝑐
𝑛𝑜𝑣𝑜‖

) ≤ 𝜏

 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑜, 𝑐𝑎𝑠𝑜 𝑐𝑜𝑛𝑡𝑟á𝑟𝑖𝑜 

 (12) 

Now, whether 𝑝𝑐 = [𝑥 𝑦 𝑧]𝑇 ∈ ℶ′, in the absence of systematic errors, the 3D rigid body transformation from 

point 𝑝𝑟 ∈ ℵ′ to point 𝑝𝑐 is given by: 

𝑝𝑐 = 𝑅𝑝𝑟 + 𝑡  (13) 

In order to realize the pairwise 3D point cloud registration in this work, the following error function must be 

minimized: 

𝑒 = ∑

𝑖

‖𝑅𝑝𝑟 + 𝑡 − 𝑝𝑐‖
2 (14) 

Replacing the second term in Equation (11) in Equation (14): 

𝑒 = ∑

𝑖

‖(𝑅𝑝𝑟 + 𝑡) − [𝑝𝑟 + (𝑑𝑐 − 𝑛𝑟
𝑇𝑝𝑟)𝑛𝑐]‖

2 (15) 
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Finally, the transformation parameters 𝑅 and 𝑡 are estimated using the Horn method [4]. In this method, the 

origin of the coordinate system of each 3D point cloud is translated to its centroid. The performance of this 

displacement allows the method to be realized in 2 stages, the first one consists of calculating the rotations, 

using quaternions, followed by the second, calculation of the translation. Next, the experiments and discussion 

of the results obtained using the method proposed in this work will be presented. 

3. Experiments and Discussion of Results 

As proof of concept of the method proposed in this work, LASER profiling of a terrestrial environment was 

performed using a TLS from the manufacturer FARO LS 800 with the following characteristics: 360° field of 

view in the horizontal direction and 120° in the vertical direction, maximum range between 15-400 meters, were 

generated for our purposes eight 3D point clouds (𝑋0, ...,X7) with a density of 5 points/m², with overlap between 

the pairs of point clouds around 30% and the average distance between the TLS and the object of interest is 

around 20 meters. The area of interest encompasses the region of the Institute of Geosciences of the Federal 

University of Rio Grande do Sul in Brazil. 

As described, the first step of the proposed method consists of detecting and removing outliers in point clouds, 

since the step of pairwise 3D point cloud registration is sensitive to the presence of these noises. In order to 

evaluate the outliers removal algorithm, experiments were carried out with each 3D point cloud using a value 𝑑 

= 50 cm and α = 0,10. The results can be seen in Table 1. 

Table 1: Outlier removal results 

Clouds Nº of points (raw data) Nº of points (After processing) 

𝑋0 1,258,633 865,630 

𝑋1 1,276,299 875,960 

𝑋2 1,215,492 816,268 

𝑋3 1,492,542 1,036,653 

𝑋4 1,522,622 1,090,977 

𝑋5 1,506,307 1,041,137 

𝑋6 1,481,923 1,035,802 

𝑋7 1,292,298 880,596 

As can be seen in Table 1, before removing the outliers, the 3D point clouds had approximately 1,500,000 

points. Using the outlier removal algorithm, around 31% of the points were discarded from the original 3D point 

cloud. This step of the method seeks, basically, to remove all points outside the range from the sample 𝜇𝑘 ± 𝛼 ∙

𝜎𝑘. In this work, the values assumed for the variables 𝑑 and α were determined empirically, being those that best 

represented the expected sampling of the object on the surface. Figure 7 shows the 3D point clouds after the 

outlier removal process. 
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Figure 7: Point clouds remaining after using the outlier detection and removal algorithm. 

The second step of the method proposed in this work consists of approximate initial values calculation between 

each pair of 3D point clouds. As previously described, this approach of estimating initial values is done by 

combining the SIFT3D algorithm with the PFH algorithm. For the performance of the SIFT3D algorithm, it is 

necessary to determine values of the threshold for the following variables: minimum scale, number of octaves 

and number of octaves per scale. The performance of the PFH algorithm is affected by the size of the 

neighborhood radius (𝑠𝑣𝑖). Figure 8 shows extreme points (green and blue points) detected in the 3D reference 

and search point cloud, respectively. As can be seen, the extreme points represent edge points and smooth or 

abrupt variations in the surface. 

 

Figure 8: 3D extreme points: (a) 3D extreme points (in green) detected in the reference 3Dpoint cloud (red); (b) 

3D extreme points (in blue) detected in the search 3D point cloud (in green) 

Table 2 shows three experiments obtained with different threshold values for each of the aforementioned 

variables. 
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Table 2: Threshold values of the SIFT3D algorithm variables and average number of extreme points in each 

pair of point clouds 

Minimum 

Scale 

Number of 

octaves 

Number of 

octaves per 

scale 

𝑠𝑣𝑖  Number of 

extreme 

points 

Number of matches 

0.05 6 4 1.0 cm 3009 504 

0.005 8 6 5.0 cm 1253 236 

0.005 8 6 10.0 cm 67 52 

The variables presented in Table 2, were determined empirically. These variables are expressly critical to the 

performance of the SIFT3D + PFH algorithm, since the calculation of the attributes of the local descriptor 

depends on the normal vectors of the extreme points, obtained by the SIFT3D algorithm. These normal vectors 

are determined as a function of the extreme point and its neighbors points contained in a radius 

circumference 𝑠𝑣1 . The value of the variable 𝑠𝑣i  is directly proportional to the amount of points and noise 

present in the 3D point cloud. However, lower the value of 𝑠𝑣1 better defined is the normal vector, thus avoiding 

the use of neighbor points unrepresentative the curvature of the surface where the extreme point belong. 

Consequently, the attributes of the local descriptor (calculated by the PFH) becoming better defined and 

represented by the resulting histogram. As a result, a greater number of true matches established arise leading to 

a better statistical quality. Another consequence is the reduction of the processing time to calculate the attributes 

of the descriptors, since the computational complexity will be 

𝑂(𝑛𝑢𝑚𝑒𝑟𝑜_𝑝𝑜𝑛𝑡𝑜𝑠_𝑣𝑖𝑧𝑖𝑛ℎ𝑜𝑠 ∙ 𝑝𝑜𝑛𝑡𝑜𝑠_𝑒𝑥𝑡𝑟𝑒𝑚𝑜𝑠2).  

Figure 9 shows the results obtained with the proposed method for a pairwise initial approximation of the 3D 

point clouds. In Figure 9a, the 3D point clouds pairs are showed before the coarse alignment step. Figure 9b 

shows the results after the application of the coarse alignment to the 3D point cloud ℶ′ into the LRS of the 

reference cloud ℵ′. 

Table 3: Results of the segmentation of plans 

3D Point Clouds Nº of planes 

𝑋0 50 

𝑋1 70 

𝑋2 59 

𝑋3 58 

𝑋4 40 

𝑋5 90 

𝑋6 70 

𝑋7 60 

 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2022) Volume 85, No1, pp 71-88 

84 

 

Figure 9: Result of the initial approximation between ℵ′ and ℶ′. (a) Before and after (b) the initial alignment. 

In this work, the coarse pairwise 3D point clouds registration provides robustness to the proposed point-to-plane 

correspondence model, reducing the abrupt variation of point of view displacement between the pair of 3D point 

clouds, since the overlap between them is only about 30%. This scheme of determining an initial transformation 

contributes to avoid the problem of mathematical model convergence in local maximums and minimums during 

the estimation of 𝑅 and 𝑡. 

 

Figure 10: Segmented planes using the RANSAC algorithm 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2022) Volume 85, No1, pp 71-88 

85 

The estimation of the transformation parameters using the point-to-plane correspondence model is divided into 

three stages. Firstly, the plan segmentation process is performed using the RANSAC algorithm. In this work, 

points belonging to the plane were considered if has a distance less than 2.0 cm in relation to the analyzed plane. 

Table 3 shows the number of plans obtained with RANSAC and Figure 10 shows the segmented plans in each 

point cloud. 

As can be seen in Table 3, the point cloud X5 presented the largest number of segmented planes, however, 

visually it can be seen that most of the planes were extracted from regions with high density of vegetation, and 

they should be discarded from the matching process. It is also observed that, in all 3D point clouds, the plans 

referring to the ground were not segmented as a single plane. This can be explained due to the irregular 

topography of the profiled scenes. 

Secondly, considering that a set of plans is extracted in ℵ′  (reference cloud) and their normal vectors are 

estimated with RANSAC 𝑛𝑖 = [𝑛𝑥𝑛y𝑛z]
𝑇
 and 𝑑𝑖, the point-to-plane model calculates each point orthogonally 

projected in ℶ′ (research cloud) and estimates the normal vectors 𝑛𝑗 and the distance from the origin to the plane 

𝑑𝑗. The correspondence between the points of a plane in ℵ′ with the corresponding plane in ℶ′ is correct if the 

angle between 𝑛𝑖 and 𝑛𝑗 is less than or equal to the angle threshold  𝜃. In this work it was used 𝜃 = 0.5 °. The 

number of matching planes established using the proposed model is shown in Table 4. 

Table 4: Number of matching plans 

Pairs of 3D Point Clouds Number of matching plans 

𝑋1 − 𝑋0 27 

𝑋2 − 𝑋1 38 

𝑋3 − 𝑋2 19 

𝑋4 − 𝑋3 11 

𝑋5 − 𝑋4 12 

𝑋6 − 𝑋5 16 

𝑋6 − 𝑋7 48 

𝑋7 − 𝑋0 39 

𝑋3 − 𝑋0 17 

𝑋2 − 𝑋0 22 

𝑋7 − 𝑋5 15 

As can be seen in Table 4, for each pair of 3D point clouds, a number of matches were established greater than 

the degree of freedom required to apply the criteria for parameter optimization. Consequently, 𝑅  and 𝑡  are 

estimated using the point-to-plane correspondence model in a dissociative manner based on the method of Horn 

[4]. 
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Figure 11: Results obtained with the propose method for the pairwise 3D point cloud registration 

In order to statistically analyze the results obtained with the proposed method, the verification error was 

calculated. The verification error is represented by the absolute mean and the standard deviation of the distance 

between the centroid of the points belonging to a given plane in ℶ′ and its correspondent plane in the cloud ℵ′, 

after 𝑅 and 𝑡 estimative. In order to verify the accuracy of 𝑅 and 𝑡, the Root of the Mean Square Error (RMSE) 

of the planes distances residuals to the origin of the LRS of each pair of 3D point clouds was also calculated. 

Figure 11 shows these verification errors (mean and standard deviation). 

The pairwise 3D point cloud registration 𝑋4 − 𝑋3, in Figure 11, produced the less convincing results, since the 

point-to-plane RMSE was about 0,45 m, due to the geometry of the planes and plane extraction process leading 

to ill-defined planes. Then in Figure 11, the values of the mean distance between the centroid of the points 

belonging to a given plane in ℶ′ and its correspondent plane in the 3D point cloud ℵ′, after estimating 𝑅 and 𝑡, 

show a systematic trend in the result (see straight line dotted in gray). This can be explained by the 

accumulation of systematic errors produced by the sensor during the data acquisition stage and by the insertion 

of random errors in the parameter estimation process. The accumulation of these errors causes closing error. 

4. Conclusion 

The coarse pairwise 3D point cloud registration is essential for the high performance of the propose method, 

since is the main source of misalignment between the registered 3D point clouds. In this work, the combination 

SIFT3D + PFH was able to provide approximations sufficiently adequate for the estimation of the 

transformation parameters. The correspondence model proposed to estimate the transformation parameters 

responded to expectations. The proposed method has the following advantages: (1) the plane matching is more 

stable than the correspondence between points; (2) plane surfaces are easily found in anthropic environments; 

(3) the planes are less influenced by noise; (4) it is robust to situations with low overlap between pairs of 3D 

point clouds; and (5) it does not depend on the sampling (or level of detail) of the data. As a recommendation 

for future work, it is suggested to apply parameter sensitivity tests. 
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