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Abstract 

Today, autonomous driving is considered a branch of artificial intelligence in which various technologies are 

employed, ranging from computer vision to machine learning-based sensor fusion technologies. This work 

summarizes the autonomous vehicle advances and also discusses the crucial components required to build such 

technology. The state-of-the-art architectures of autonomous vehicles compromise several core modules, 

including sensors, road scene perception, motion planning, core control system, and system management. The 

research showed that computer vision technologies such as object detection and tracking and localization and 

mapping techniques, play crucial roles in an advanced autonomous vehicle functional architecture. The current 

stage of this industry demonstrates the successful prototyping of autonomous vehicles without drivers’ 

significant interventions. However, the research centers and automobile industries’ ongoing development aim to 

explore the productization of such highly automated vehicles and seek to improve road scene perception to 

reduce the number of sensors while enhancing or maintaining the current performance. 
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1. Introduction  

Autonomous driving is an emerging technology that has been of interest to many companies and researchers 

over the past decades, and it encompasses a broad area of self-driving cars, drones, trains, and agricultural 

machines along with military applications [1]. The concept of autonomous driving goes back to the 1920s when 

American Wonder – a Chandler controlled by radio signals – was demonstrated in New York City [2]. After 

years, the first autonomous vehicle controlled by itself was developed by Carnegie Melon University in 1986, 

which was a self-driving van.  
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In 2005, another team at Carnegie Melon University built a self-driving car that could successfully navigate 

eight miles and won the defense advanced research projects agency (DARPA) grand challenge [2]. Researchers 

at Google developed an autonomous vehicle in 2010, traveling from Los Angeles and San Francisco and 

recorded over 140,000 miles of driving over the years. In 2016, numerous automobile companies, including 

Tesla, BWM, Audio, Mercedes Benz, and some transportation enterprises such as Uber, incorporated self-

driving hardware into their products [2]. Other streams of autonomous vehicles, such as drones or trains, could 

advance faster since their ecosystems were less engaged with human interactions than autonomous cars [3].  The 

fundamental concept of autonomous vehicles relies on employing artificial intelligence (AI) to automatically 

control the vehicles based on surrounding information [4]. To build such a complex system including various 

components shown in Figure 1, different AI branches are utilized which include (a) supervised and unsupervised 

machine learning techniques for decision-making purposes, (b) computer vision and deep learning technologies 

for video data analysis, and (c) sensors fusion and processing techniques for vehicle control and safety [4,5]. 

Also, advances in distributed hardware such as graphical processor units (GPUs) for accelerated processing, big 

data technologies [6], and network communication (i.e., the fifth generation referring to 5G [7]) play crucial 

roles in building autonomous vehicles [1]. 

 

Figure 1: Autonomous vehicle AI-based components 

2. Levels to Autonomy 

The “autonomous” terminology offers a broad range of definitions, and such an ambiguity led the practitioners 

in the domain of the autonomous vehicle to categorize the autonomy of driverless vehicles into several levels as 

follows, implying the level of the automatic controlling system along with drivers’ engagement in a vehicle [8]. 

Level 0: No automatic and zero controlling driving capabilities are offered at this level except optional and 

necessary hazardous alarms. Level 1: The automated controlling systems and drivers share vehicles’ control 
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while the drivers still have full control. Such vehicles are often provided with advanced driving assistance 

systems. Level 2: The automated control system offers an optional ability to take full control of the vehicle, but 

the driver is still fully responsible for conducting the car. Level 3: The autonomous vehicle can take full control 

without passenger’s supervision; however, drivers must intervene if alarming systems require any manual 

efforts. Level 4: The automated system takes full control of the vehicle without drivers’ attention or intervention 

except for unpredicted circumstances where the drivers take back control of the car. Level 5: In this last level, 

no human intervention is considered.  

3. Autonomous Vehicle Functional System Architectures  

The functional system architectures of autonomous vehicles have advanced over the past decades where the 

state-of-the-art topology is formed of five major components [9], including (a) sensors, (b) perception and scene 

understanding, (c) behavior, and motion planning, (d) vehicle control and actuation and (i) system management 

illustrated in Figure 2.  

 

Figure 2: The functional system architecture of a novel autonomous vehicle 

As seen in the figure, the flow of information starts from sensors to perception systems and continues towards 

the motion planning component. The processed information by AI-based modules is transferred to the control 

and stabilization system to adjust steering, acceleration, and brakes in real-time. A system management software 

algorithm monitors potential system failure, provides backup plans, and ensures a safe operation [9]. The 

significant subsystems forming an autonomous vehicle functional architecture are discussed [10].  

4. Sensors and Hardware 

Sensors and hardware are the primary pillars of autonomous driving systems, which are categorized into five 

groups, including (a) exteroceptive, (b) proprioceptive, (c) communications, (d) actuators, and (e) computational 

components [11]. Exteroceptive sensors are used for road scene perception purposes, including camera, lidar, 

ultrasound, or radar, whereas proprioceptive sensors are employed to monitor autonomous vehicles’ operation 

speed or acceleration [11]. Actuators convert sensors data into electrical signals for digital processing, and 
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computational units are designed to store the sensor data [11]. 

4.1. Cameras 

To replace drivers’ visual systems, various types of cameras are required in autonomous vehicles to capture 

image/video data, including (a) monocular cameras to detect traffic light, (b) omnidirectional cameras providing 

a panoramic view, (c) event cameras to capture events such as a considerable change in brightness [12]. The 

cameras often capture video data or static images used for 2D/3D object detection, pedestrian detection, 

tracking, semantic segmentation, traffic lights, and signs detection by employing advanced computer vision and 

deep learning techniques [11,12,13,14].  

4.2. RADAR and LIDAR 

Radio detection and ranging (RADAR) and light detection and ranging (LIDAR) are the sensors that can capture 

the depth information used to complement the video data captured by cameras [15]. RADAR, LIDAR, and 

ultrasonic sensors can capture 3D information from surrounding where RADAR emits radio waves whereas 

LIDAR works with infrared, and the illumination has no impact on the quality of their captured data, unlike the 

cameras. The data collected using RADAR and LIDAR, along with some cameras’ data, are used for sensor 

fusion, which can exceed human perception proved by researchers [11,15]. Figure 3 illustrates a typical scene, 

including various objects whose data captured by different sensors such as cameras, LIDAR, and RADAR.  

 

Figure 3: Various components in a typical scene that are recognized by different sensors 

5. Localization and Mapping 

A crucial component in an automated driving system refers to the localization and mapping module in which the 

position of a vehicle must be accurately and continuously defined, so-called ego-localization [11]. An 

autonomous vehicle must locate itself in a correct position for safe driving and communicate with the global 
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navigation system. Among the localization and mapping techniques, simultaneous localization and mapping 

system so-called SLAM, global positioning system accompanied with inertial measurement unit referring to 

(GPS-IMU) and a priori map-based localization techniques have been broadly employed in the state-of-the-art 

autonomous driving architectures [11]. Another advanced localization technique refers to point cloud matching, 

a computer vision technology to discover spatial transformation between two cloud points [16]. 

6. Perception 

Road scene perception is the central pillar of autonomous driving systems, encompassing various tasks to 

extract information from vehicles’ surroundings. Among the sensors used for perceiving scenes, 2D/3D cameras 

are still the main hardware components collecting image-based data processed by computer vision techniques 

[17]. The core perception module of autonomous vehicle compromises (a) detection techniques including 

image-based object detection, semantic segmentation, 3D object detection, (b) tracking techniques such as 

object tracking, and (c) road and lane detection [11].  Sensor fusion methods aim to simultaneously utilize 

RADAR, LIDAR, and ultrasound data to measure the depth – a missing part in vision – and provide accurate 

information about objects and obstacles surrounding vehicles; however, some researchers consider depth-

cameras to reduce the dependency of autonomous vehicles on RADAR/LIDAR. One of the significant 

challenges in the road scene perception is to conduct multimodal data alignment and synchronization to provide 

frame-level road scene prediction [11].  

7. Performance and Risk Assessment  

A reliable autonomous vehicle continually evaluates the vehicle’s current risk status and accurately predicts 

potential risks to drivers, passengers, and surrounding pedestrians [11]. Risk and uncertainty assessment are 

crucial components of autonomous vehicles, which indicate the level of risks by quantifying the risks using 

Bayesian and neural network models. Also, surrounding driving behavior assessment and driving style 

recognition are considered other performance and risk factors assessment tools [11].  

8. Decision-Making 

A sophisticated post-processing algorithm is often required to stabilize the output of computer vision, deep 

learning, sensor fusion models, and incorporate the finding from the core assessment module for decision-

making [11,18]. Such a module ensures that an autonomous vehicle, its passengers, and surrounding pedestrians 

are safe, and the risk level is low or manageable with a backup plan. The core decision-making module often 

includes (a) global planning and (b) local planning to accomplish the objective of a trip, which is to arrive at the 

destination highly safely without failures [11]. 

9. Human-Machine Interaction 

One of the vital concepts of an autonomous vehicle is to provide a technology in which physical human 

interactions such as steering is removed [19]. However, a bilateral communication is always required between 

an autonomous vehicle and its passengers to adjust various parameters about the primary driving tasks (i.e., 
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defining the destination) or secondary passengers’ tasks such as adjusting the cabin temperature [19]. The 

human-machine interaction (HMI) core module is designed using natural language processing (NLP) and speech 

recognition algorithms to address such requirements. Recently, video-based HMI technologies are implemented 

in which a multimodal video and audio data are utilized for model development [19].  

10. Conclusion 

The current autonomous vehicles stage compromises state-of-the-art deep learning, sensor fusion, accelerated 

hardware, and network technologies incorporated into a system resulting in several autonomous vehicle 

prototypes considered level-4 autonomy. Soon, scientists and automobile companies plan to enhance road scene 

perception to address existing issues since the current algorithms sometimes fail to predict the surroundings. 

Furthermore, they plan to employ improved sensor fusion techniques for better data alignment and vehicle 

localization. The researchers also seek potential solutions to reduce the hardware components – especially the 

number of sensors – or onboard data capturing technologies to simultaneously collect multimodal data to reduce 

the system complexity while offering the same or enhanced performance. The researchers hope the level-4 

vehicles to be commercialized shortly; however, a temporary remote-control system might be required for a 

while to guarantee the safety of vehicles, passengers, and pedestrians.   
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