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Abstract 

Genetic Algorithm (GA) is an optimization method that has been widely used in the solution of NP-Hard (Non-

deterministic Polynomial-time) problems, among which is the Vehicle Routing Problem (VRP), widely known 

in the literature due to its applications in the logistics and supply sectors, and which is considered in this work. 

However, finding solution for any optimization problem using GA presupposes the adoption of a solution 

encoding scheme that, according to the literature, impacts its performance. However, there is a lack of works in 

the literature exploring this theme. In this work we carry out an analysis of the main encoding schemes (binary 

and integer) employed in the GA for the solution of the capacitated VRP (CVRP), in order to evaluate the 

influence of each of them on the behavior of the GA population and, consequently, on the algorithm 

performance. To this end, we developed a computational tool that allows visualizing the GA individuals 

(solutions) mapped to a two-dimensional space. Based on the experiments conducted, we observed that, in 

general, integer vectors provide better conditions for GA individuals to explore the solution space, leading to 

better results. The results found, besides corroborating some assumptions in the literature, may justify the 

preference for integer encoding schemes to solve CVRP in recent literature works. In addition, this study can 

contribute to the choice and/or proposition of heuristics that allow GA to search for better quality solutions for 

the VRP with less computational effort. 

Keywords: Genetic Algorithm; Encoding Scheme; GA Behavior; Capacitated Vehicle Routing Problem. 

------------------------------------------------------------------------ 

* Corresponding author. 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2020) Volume 73, No  1, pp 96-110  

 

97 
 

1. Introduction 

The Genetic Algorithm (GA) is a metaheuristic method based on Charles Darwin's theory of natural evolution. 

According to that theory, the individuals of a population that best adapt to the environment in which they live 

are more likely to survive and reproduce [1]. The evolution process in GA occurs from a population of initial 

individuals, through the application of genetic operators for selection, crossover and mutation of individuals, 

which are the encoded solutions of the problem. The GA has been widely used in the solution of highly complex 

optimization problems, known in the literature as NP-Hard (Non-deterministic Polynomial-time), among which 

is the Vehicle Routing Problem (VRP), investigated in this work, which has been attracting the attention of 

many researchers in recent years due not only to the difficulty of its solution, but also to its presence in several 

practical situations in the logistics and supply sectors. The VRP basically consists in determining a set of routes 

so that a fleet of vehicles can serve a set of geographically dispersed customers, optimizing, for example, the 

total cost of routing and/or the total distance traveled, respecting the operational restrictions intrinsic to the 

considered environment [2,3]. In general, the VRP involves two main steps: grouping customers by route and 

defining the sequence of service sequence. There are several variants of the VRP, which take into account the 

vehicle's capacity (each vehicle has a specific capacity), time windows (customers must be served at a specific 

time), heterogeneous vehicle fleet (different vehicles), among others [4]. The most basic version is the 

Capacitated Vehicle Routing Problem (CVRP), considered in this work and described in detail in section 2.1, 

which considers a homogeneous set of limited capacity vehicles, initially located in the same depot and being 

the only restriction imposed the vehicle capacity [5,6]. The literature review conducted in this work showed that 

GA has been widely used in the resolution of VRP due to the good results it has shown for this problem. 

However, finding solutions to any combinatorial optimization problem through GAs presupposes the adoption 

of a solution encoding scheme, that is, how to represent the solution on the GA chromosome. Thus, several 

solution encoding schemes for the VRP have been proposed. However, according to the literature, the encoding 

scheme can impact on the performance of the GA [7-9]. The problem is that there is a lack of studies that 

explore how such schemes influence the behavior of the GA population and, consequently, its performance. In 

this work we carry out an analysis of the main solution encoding schemes employed in the GA to optimize the 

CVRP, in order to evaluate their influences on the behavior of the GA performance well as what are their 

advantages and disadvantages. For that, we developed and present in this work a computational tool that allows 

visualizing the GA individuals mapped to a two-dimensional space. 

2. Theorectical background 

2.1. Capacitated Vehicle Routing Problem (CVPR) 

 

Figure 1: Example of vehicle routing with three routes starting from the distribution center (depot) 
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In the CVPR, illustrated in Figure 1, each customer has its demand previously defined, which must be fully 

deliverd by only one vehicle. All vehicles have identical capacity, and depart from a unique distribution center 

[2,5,10].  

In other words, the CVPR consists of finding a set of routes, each of which must be covered by a vehicle, with 

the aim of minimizing the total cost of the routes respecting the following restrictions: (a) each route must start 

and end in the same distribution center (depot); (b) each customer must be visited only once and by the same 

vehicle; (c) the sum of customer demands grouped on a route cannot exceed the vehicle's capacity. The 

mathematical formulation for the CVPR, adapted from [10] to the binary encoding scheme, can be expressed as 

follows:  

Minimize 
   ∑∑∑    
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where: id : demand of customer I, k: vehicle, K: set of vehicles, S: Set of customers, nc: number of customers, 

v(S): minimum number of vehicles to attend S, cv:  capacity of vehicles, 
ijc : cost of the path from the customer 

i to customer j, tc: total cost of the composed routes, ijkx :  path from customer i to customer j with vehicle k. 

Equation 2 ensures that K vehicles will be used starting from the distribution center, while the Equation 3 

guarantees that each route has its beginning and ending at the distribution center. Equation 4 defines that 

customers must be attended exactly one time and the Equation 5 keeps the flow ensuring that the vehicle arrives 

at a customer and out of it, preventing the route ends prematurely. Equation 6 is attributed to the elimination of 

sub-routes, imposing on the model that routes that do not start and end at the depoit are disregarded. In this 

restriction, v(S) represents the minimum number of vehicles required to attend a set of customers S. Equation 7 

defines that the vehicle's capacity is not exceeded, Equation 8 defines that all elements of matrix   are binary 

numbers and, finally, Equation 9 below is used to evaluate the solutions generated by GA. It reflects the value of 
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the objective function (OF) and combines the number of vehicles used in the solution, violated restrictions (Eqs. 

2 to 7) and the total cost of routes (Equation 1). 

                   (9) 

where: WV is the weight assigned to the number of vehicles used in the solution; nr is the number of violated 

restrictions and Wr is the weight associated to the violated restrictions. 

2.2. Genetic Algorithm (GA) 

The GA consists of a technique from evolutionary computation that simulates the mechanisms of natural 

selection, genetics and evolution. Its bias lies in the better an individual adapts to the environment, the greater 

the chances of surviving and generating descendants [1,11]. A GA individual is defined as a chromosome, 

consisting of genes, and represents a solution of the problem to be solved. The genes represent the variables of 

the problem, and each position of a gene is called allele that, in binary encoding scheme is represented by a bit. 

By means of competition, the chromosomes of a population with greater aptitude are selected and crossed each 

other, generating new chromosomes better than those ones of the previous population. So, at each generation the 

probability of one or more individual be a solution of the problem is increased [11].  The GA involves four main 

operations:  evaluation, selection, crossover and mutation. In the evaluation operation fitness function is used to 

measure the aptitude of the individuals of the population, providing information such as the number of new 

individuals each one can generate according with its aptitude. The selection operation consists of the choice of 

the best individuals for reproduction. The crossover operation consists in recombination of genes from selected 

individuals, responsible to reproduce descendants more adapted to the next generation. Finally, a random change 

in a small number of alleles, with some small probability, is performed to preserve the diversity of the 

population. This operation, called mutation, is essential to avoid the premature convergence [1,11]. The GA 

operating scheme is illustrated in Figure 2. 

 

Figure 2: The GA operating scheme 

It is important to highlight that a suitable convergence of the GA depends on some configuration parameters 

such as: solution encoding scheme, size of population, evaluation criteria, crossover and mutation rates, among 
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others. In general, these parameters are empirically defined. Other important concepts associated with GA, 

related to operations for solution's encoding and decoding are: 

• Genotype: is related to the population in the computation space, in which the solutions are represented to be 

easily understood and manipulated by computers [12]. 

• Fenotype: is related to the population in the real-world solution space, in which the solutions are represented 

to be interpreted in real situations [8,12]. In other words, it is the structure built from the information of the 

genotype that allows chromosome decoding. 

• Encoding and Decoding: in most cases, the phenotype and genotype spaces are dierent. Encoding is an 

operation that transforms a solution from the phenotype to genotype space, while decoding is responsible by 

transforming a solution from the genotype to the phenotype space (see Figure 3). The main encoding schemes 

are: Binary, Value (integer, float, string, etc), Permutation and Tree [8]. Since these operations are carried out 

repeatedly during the fitness value calculation (evaluation) in a GA, they need to be simple and fast [8]. 

 

Figure 3: Operations for encoding and decoding solutions generated by GA 

2.3. Encoding schemes employed for solving VRP 

For solving any problem using GA it is essential to define a scheme to represent a solution in the chromosome 

[8,9,12,13]. In the simplest cases, the binary alphabet {0,1} is used, which for many authors is the most natural 

representation for GA, although in practice the binary representation is not always the most appropriate. The 

encoding scheme may vary according to the problem and/or strategy adopted. However, it must allow the 

computational interpretation of the variables that define the solution of the problem in question. The literature 

review, considering the last decade, shows that there are several ways of encoding the VRP solutions in GA, as 

shown in Table 1. It is important to mention that although there are many works in the recent literature 

exploring the application of GA in the solution of the VRP, they usually focus on the quality of the solution 

found, presenting no discussion about the elements that can impact the behavior of the population of the AG 

and, consequently, in the its functioning. 

Based on Table 1 it is possible to notice that, in general, there is a strong tendency to use a solution encoding 

scheme for the VRP using vectors of integer numbers. Some authors such as [14], for example, justify the 

choice for the integer encoding scheme, explaining that it is a more direct representation of customers and/or 

vehicles, facilitating the decoding step. On the other hand, there are also authors who prefer to use binary coding 

because it is more natural for AG. Another trend observed is the use of mixed encoding, in which the 

chromosome is represented by multiple types of data, as the encoding described in [15].  However, there are no 

studies exploring how each scheme impacts the performance of the GA. The main CVRP solution encoding 
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schemes (binary and integer), which are considered in this work, are detailed in subsections 2.3.1 and 2.3.2. 

Table 1: Encoding schemes employed in GA for VRP solution 

Work 
Data structure Data type 

Vector Matrix Binary Integer Real 

Bermudez and his colleagues [16] X   X  

Kansou e Yassine [17] X   X  

Lau and his colleagues [18] X   X  

Wang e Lu [19] X   X  

Lee and Nazif [2] X   X  

Ursani and his colleagues [20] X   X  

Lu  and Yu [14] X   X  

Masum and his colleagues [21]  X  X  

Reiter and Gutjahr [22] X   X  

Vidal and his colleagues [23] X  X X  

Nguyen and his colleagues [15] X  X X  

Cho and his colleagues [24]  X  X  

Liu and his colleagues [25] X   X  

Osaba and his colleagues [26]  X   X 

Khalili-Damghani and his colleagues [27] X   X  

Lima and his colleagues [28]  X X X  

Mandal and his colleagues [4] X   X  

Sánchez-Oro and his colleagues [3] X   X  

Wang and his colleagues [29]  X  X  

Lima  and Araújo 9]  X X   

Lima and his colleagues [6]  X X   

Hosseinabadi and his colleagues [30] X   X  

Total 15 7 5 19 1 

2.3.1. Encoding scheme for CVRP solutions using a matrix of binary numbers 

The CVRP solution encoding scheme illustrated in Figure 4 is a generalization of the schemes employed, for 

example, in the works [6,10]. Such scheme is based on a three-dimensional matrix of binary numbers with M 

columns, N rows and Z depth, where M represents the number of customers to be served, N represents the 

customer service sequence and Z is defined by the number of vehicles needed to meet the total demand. In other 

words, the column indicates the customer to be visited, the row indicates the order of visiting and the depth 

indicates the vehicle assigned to serve the customer. 
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Figure 4: Operation of the encoding scheme using a matrix of binary numbers 

2.3.2. Encoding scheme for CVRP solutions using a vector of integer numbers  

Some authors such as [2,3,5,14,16,22] employed encoding schemes to represent CVRP solutions that can be 

generalized by the scheme illustrated in Figure 5. It consists of a vector of integers of length N representing the 

number of customers to be served, and each gene in the vector is a number that corresponds to a given customer.  

The sequence of genes in the vector determines the service order of customers, and the set of customers that 

make up each route is limited by the capacity of the vehicles, that is, each customer is assigned to a specific 

vehicle in the sequence in which it appears in the vector and, when the vehicle's capacity is exceeded, a new 

route is started. 

 

Figure 5: Operation of the encoding scheme using a vector of integer numbers 

2.4. Computational tool for visualization and analysis of the GA population’s behavior 

The developed tool allows the visualization and analysis of individuals of the GA population mapping them 

from a n-dimensional space to a two-dimensional space, as illustrated in Figure 6. The results generated by the 

tool are recorded in a CSV (Comma Separated Values) text file, which can be read by the Microsoft Excel, and 

in video AVI (Audio Video Interleave) format, providing a more detailed analysis of the populations behavior. 
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Figure 6: Interface of the developed computational tool 

In the panel on the right of the screen shown in Figure 6, where the individuals are mapped, the x axis is 

represented by the Euclidean distance and the y axis by the distance of Hamming. For that, it is considered that 

an individual α with all the alleles null is represented by the point (x0, y0) and then, each individual i of a 

population P is mapped to a point (xi, yi), based on the two distances between individuals i and α. It is worth 

mentioning that these distances are widely used in the literature to measure the similarity between individuals 

from populations generated by metaheuristic algorithms [9]. In addition, the tool presents two graphs that are 

plotted at run time and allows obtaining the following performance evaluation measures of the GA: 

• Population Diversity (DIV): this measure expresses, through a rate ranging from 0 to 1, the diversity of the 

population. Value of 0 for this rate indicates that all individuals in the population are similar, while value 1 

indicates that all individuals are completely different. 

• GAP: expresses how far the result obtained for a problem is from the best result reported in the literature for 

that problem. In this work it is calculated as follows: GAP = (OF - OF_best) / OF_best, being OF the value 

calculated by using Equation 9 and OF_best  the OF value of the best solution found in the literature. 

• Explored Area (AE): this measure reflects, through a rate ranging from 0 to 1, the percentage of the area of 

the solutions space explored during the execution of the GA. The higher the rate, the greater the area explored, 

indicating that the algorithm was more likely to explore more promising points in the solution space. 

• Dispersion of the population (DISP): describes how dispersed the individuals of the population are, that is, 

the greater the average dispersion, the greater the area explored in the solution space. 
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• Percentage of feasible solutions (PSF): expressed through a rate ranging from 0 to 1, it reflects the capacity 

of the GA in converting non-feasible solutions in feasible ones. 

3. Experimental setup 

First, a bibliographic survey was carried out and from it were selected the 22 works presented in Table 1. From 

these works we identified the two main encoding schemes adopted in the CVRP solution (binary encoding 

scheme  BES and integer encoding scheme  IES), which were described in subsections 2.3.1 and 2.3.2, and 

are analyzed in this work using the computational tool presented in section 2.4. The BES was chosen because it 

is more natural for GA and because of its wide use in the literature for solving combinatorial optimization 

problems, while IES was chosen for being a more direct representation of customers and vehicles that facilitates 

the decoding operation, as stated in many works that employ this scheme. To analyze the influence of BES and 

IES encoding schemes on the GA population behavior, it was applied in 3 instances (data sets that describe 

CVRP scenarios) from the collection proposed by [31]. The instances E-n13-k4, E-n33-k4 and E-n76-k14, 

presented in Table 2, were chosen because they represent different degrees of optimization difficulty (easy, 

medium and difficult) and different sizes of scenarios (small, medium and large) taking into account the number 

of customers and vehicles [32]. For example, the instance E-n13-k4 considers a CVRP scenario with 13 

customers and 4 vehicles, being classified as small (few vehicles and few customers). The optimal solutions for 

the three instances, used for calculating the GAP, were extracted from the work of [33].  

Table 2: Scenarios described by the instances considered on this work 

Data that describe the scenario 
Instance 

E-n13-k4 E-n33-k4 E-n76-k14 

Number of costumers  13 33 76 

Number of vehicles 4 4 14 

Capacity of the vehicle 6000 8000 100 

Optimal solution (      ) 247 835 1021 

Table 3: GA parameter configuration 

Parameter Adopted values 

Encoding scheme (eSch) BES IES 

Population size (Pop) 200 

Number of generations (nGer) 50 

Crossover rate (cr) 0,90; 0,70; 0,50 

Mutation rate (mr) 0,10; 0,05; 0,01 

Elitism rate (er) 0,10 

Selection method roulette wheel 

Number of feasible individuals included  

into the initial population 
2 
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In order to describe the behavior of the GA population according to the encoding scheme adopted, 

computational experiments were performed. For this, an experiment planning (Design of Experiments  DoE) 

was also carried out considering different configurations of the main operators of the GA (crossover and 

mutation), which are presented in Table 3. This planning resulted in a set of 18 experiments whose results are 

described in Table 4. To make a fair comparison between the two encoding schemes, the same initial 

population, randomly generated with uniform distribution, was adopted for starting the GA. In addition, two 

individuals generated by the Gillett & Miller heuristic [34] were included in the initial population. In that way, 

the GA already started with feasible solutions. 

4. Results and discussion 

The analysis of the influences of BES and IES on the behavior of the GA population was based on the 

comparison of the following performance evaluation measures: average GAP (   ̅̅ ̅̅ ̅̅ ), average diversity (   ̅̅ ̅̅ ̅), 

average explored area (  ̅̅ ̅̅ ) and average computational cost (  ̅̅̅̅ ). These average values were obtained from the 

measurement values calculated for the three instances considered in this work. The results obtained in the 

experiments are consolidated in Table 4, in which the values highlighted in bold indicate the best performances 

of the GA, while the underlined values indicate the worst performances. To assist the understanding of these 

results the data of the Table 4 are shown graphically in the figures 7 to 9. The solution obtained for each 

considered instance was not presented here, since that the main focus of this work is not the solution obtained by 

the GA itself, but how the process for obtaining it was impacted by the encoding scheme. Regarding the average 

GAP (   ̅̅ ̅̅ ̅̅  , it can be seen in the graph of Figure 6 that, in general, IES provided better results (lower values of 

   ̅̅ ̅̅ ̅̅ ) than those obtained by BES. With IES, experiments 10 and 13 provided the lowest    ̅̅ ̅̅ ̅̅  (0,20). 

Employing BES, the lowest    ̅̅ ̅̅ ̅̅  (0,30) was obtained in experiment 7. On the other hand, the worst 

performance of GA in relation to the    ̅̅ ̅̅ ̅̅  were obtained in experiments 17 and 3, in which the values of 0,23 

and 0,50 were obtained using IES and BES, respectively. 

Table 4: Consolidation of the results obtained with BES and IES 

Configuration BES (Experiments 1 to 9) IES (Experiments 10 to 18) 

cr mr Exp.    ̅̅ ̅̅ ̅̅     ̅̅ ̅̅ ̅   ̅̅ ̅̅  Exp.    ̅̅ ̅̅ ̅̅     ̅̅ ̅̅ ̅   ̅̅ ̅̅  

0.5 0.01 1 0.42 0.24 0.07 10 0.20 0.70 0.20 

0.5 0.05 2 0.48 0.24 0.09 11 0.21 0.72 0.21 

0.5 0.10 3 0.50 0.25 0.09 12 0.21 0.68 0.24 

0.7 0.01 4 0.31 0.24 0.09 13 0.20 0.70 0.22 

0.7 0.05 5 0.37 0.25 0.10 14 0.22 0.73 0.24 

0.7 0.10 6 0.38 0.25 0.10 15 0.21 0.69 0.27 

0.9 0.01 7 0.30 0.23 0.07 16 0.22 0.70 0.17 

0.9 0.05 8 0.36 0.23 0.08 17 0.23 0.73 0.18 

0.9 0.10 9 0.38 0.23 0.08 18 0.22 0.68 0.21 
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Figure 7: Average GAP 

IES also privileged the performance of the GA in terms of diversity (   ̅̅ ̅̅ ̅), as shown in the graph of Figure 8, in 

which it can be seen that in all IES experiments it provided a greater population diversity than that obtained 

using BES. IES provided the best GA performance in experiments 14 and 17 reaching  

   ̅̅ ̅̅ ̅ of 0.73 and the worst performance in experiments 12 and 18, in which the value of    ̅̅ ̅̅ ̅ was 0.68. The BES 

scheme showed the best performances in experiments 3, 5 and 6 reaching a    ̅̅ ̅̅ ̅ value of 0.25,  and the worst 

performances in experiments 7, 8 and 9 obtaining the value of 0.23 for    ̅̅ ̅̅ ̅. 

 

Figure 8: Average diversity 

 

Figure 9: Average explored area 

Regarding the average explored area (  ̅̅ ̅̅ ), it can be seen in the graph of Figure 9 that GA obtained the better 

performances using IES. This scheme showed its best performance in experiment 15 reaching  
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  ̅̅ ̅̅  of 0.27. On the other hand, in experiment 16 IES presented its worst performance obtaining   ̅̅ ̅̅  of 0.17. BES 

provided the best performance in experiments 5 and 6 obtaining   ̅̅ ̅̅  of 0.10 and the worst performances in 

experiments 1 and 7 in which the value of   ̅̅ ̅̅  was 0.07.  

In both encoding schemes, for increasing the explored area and consequently increase the diversity of the 

population it is suggested to apply diversification heuristics to ensure that a sufficiently large number of regions 

in the solution space are explored in a balanced way. On the other hand, if the GA presents high diversity and 

high GAP, it is recommended to use intensification heuristics, in order to concentrate searches in promising 

regions in the solution space. These information are useful to support the choice and/or proposition of heuristics 

that allow GA to find better quality solutions for the VRP with less computational effort. With respect to the 

computational cost, considering the processing time for the three instances, it was possible to observe that BES 

has an average computational cost of 815 s, which can be understood as high, if compared to the computational 

cost demanded by IES (56 s). In this sense, even though the use of BES suggests greater simplicity in the 

operations carried out, it demands a higher computational effort because it is a sparse representation. The results 

reported in this work indicate that the adopted encoding scheme significantly impacts the behavior of the 

population of GA and, consequently, in its performance. Thus, the choice of the solution encoding scheme as 

well as the configuration of the genetic operators of the GA must be done carefully. It is worth mentioning that 

genetic operators also impact GA's behavior. The lack of this analysis is a limitation of this work that we intend 

to overcome in future works. The experiments conducted pointed out that even though the GA being an 

effective, robust, and flexible metaheuristic, it depends on other heuristic mechanisms to better explore the 

solution space, especially when applied to NP-Hard problems. The problem is to know at what point in the GA 

evolution cycle a heuristic should be applied and which heuristic is most appropriate. It is in this context that the 

computational tool described in this work is inserted, since it allows investigating, through the available 

performance evaluation measures, what type of heuristic should be adopted and at what time it should be 

applied.  

5. Conclusions 

From the literature review conducted in this work we could verify the adoption of different solution encoding 

schemes for solving CVRP. Most of the works, especially the most recent, uses integer vectors perhaps because 

they simplify the decoding step since it is a more direct representation of customers and vehicles. The results of 

the experiments conducted showed that the encoding scheme impacts significantly in the behavior of the GA. 

The results also showed that the BES allows an intense exploration in subareas of the solution space, since the 

measures of diversity and explored area indicate that this scheme keeps the population concentrated in a 

determined subarea. On the other hand, IES provided better performance of the GA in all analyzed aspects 

(GAP, diversity, explored area, and computational cost). Perhaps this is the justification for the widespread use 

of this encoding scheme in more recent works, although this explanation is not provided in such works. This 

study is important because it can assist in proposing heuristics that allow GA to search for better quality 

solutions with less computational effort. In future work it is intended to carry out a more detailed analysis of the 

impact not only of the encoding schemes, but also of the main configuration parameters (crossover and 

mutation), on the performance of the GA. In addition, it is intended to propose a set of inference rules that can 
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be used to reconfigure the AG during the evolution cycle, in order to improve its performance in the solution of 

the CVRP and correlated combinatorial optimization problems. 
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