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Abstract 

In this paper we consider the convergence sets of formal power series of the form 𝑓(𝑧, 𝑡) = ∑ 𝑓𝑗(𝑧)𝑡𝑗∞
𝑗=0 , where 

𝑓𝑗(𝑧) are polynomials functions on a domain Ω in ℂ. A subset  𝐸 of  Ω is said to be convergence set if there is a 

series 𝑓(𝑧, 𝑡) such that 𝐸 is exactly the set of points 𝑧 for which 𝑓(𝑧, 𝑡) converges as a power series in t in some 

neighborhood of the origin. We prove that ℚ is a convergence set. 
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1. Introduction 

Let ℂ[z] be the set of polynomials in z, ℂ[[𝑧]] be the set of formal power series, and ℂ[𝑧][[𝑡]] be the set of 

formal power series in 𝑡 with coefficients being polynomials in 𝑧. In my dissertation [3] I considered the formal 

power series 

𝒇(𝒛)  =  𝒂𝟎 +  ∑ 𝒂𝜶𝟏𝒛
𝜶𝟏|𝜶𝟏|=𝟏  +  ∑ 𝒂𝜶𝟐𝒛

𝜶𝟐|𝜶𝟐|=𝟐 + ⋯+ ∑ 𝒂𝜶𝒏𝒛
𝜶𝒏|𝜶𝒏|=𝒏 , 

Where 𝛼𝑗= (𝛼𝑗1,…, 𝛼𝑗𝑛) are the n-multiple index and |𝛼𝑗 | = |𝛼𝑗1| + ⋯+ �𝛼𝑗𝑛�. Many research concerning 

convergence (or formal) series [7, 1, 11, 8, 5]. The general description of these problems is given in [12]. 

Recently there were new researches concerning the power series when the coefficients are polynomials of two 

or more complex variables [2, 4, 9, 6]. Consider 𝐹(𝑧, 𝑡) = ∑ 𝑃𝑚(𝑧)𝑡𝑚∞
𝑚=0 . Suppose that 𝐹(𝑧, 𝑡) as a power series 

in 𝑡 converges for 𝑧 in a set 𝐸 ⊂ ℂ𝑛. I mentioned in my dissertation that the set ℚ of rational numbers is a 

convergence set in this paper we prove this corollary. 
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2. ℚ is a Convergence Sets 

2.1. Definition [3]  

A power series 𝑓 ∈ ℂ[[𝑧1, … , 𝑧𝑛]] is said to be convergent if there is a constant C such that  |𝑎𝑘1,…,𝑘𝑛| ≤

𝐶𝑘1+⋯+𝑘𝑛 for all (𝑘1, … , 𝑘𝑛) ≠ (0, … ,0).  

A power series 𝑓 is said to be divergent if it is not convergent. 

2.2. Definition [3]  

Let 𝑓(𝑧, 𝑡) ∈ ℂ[𝑧][[𝑡]]. Define the convergence set of  𝑓 to be  Conv( f) = {z ∈ ℂ : f(z,t) converges in t}. 

2.3. Definition [3]  

A subset 𝐸 ∈ ℂ is said to be a convergence set if there exists an 𝑓 ∈ ℂ[𝑧][[𝑡]] such  that E = Conv(f). 

Moreover we proved the following theorem, 

2.4. Theorem [3] Let 𝑆 = {𝑧1, 𝑧2 , … } be a countable infinite subset of ℂ. Define an F ∈ ℂ[z][[t]] by 

𝑭(𝒛, 𝒕)  =  �𝑪𝒏[ �(𝒛 − 𝒛𝒋)]
𝒏

𝒋=𝟏

∞

𝒏=𝟎

 𝒕𝒏, 

Where 𝐶𝑛 =  ( 𝑛 𝛾𝑛� )𝑛, and 

𝜸𝒏 = 𝐦𝐢𝐧 �   𝟏  
𝟐

𝐦𝐢𝐧
𝟏≤𝒋≤𝒏+𝟏

�𝒛𝒊 − 𝒛𝒋�,  𝟏 𝒏⁄ �.  

Then Conv(F) = 𝑆. 

As a corollary from this theorem we mentioned that the set of rational numbers is a convergence set, we discuss 

the proof in this paper. 

2.5. Corollary 

The set ℚ of rational numbers is a convergence set. 

Proof. 𝐹𝑜𝑟  𝑛 ∈ ℕ, by Weierstrass theorem see [10] any function on the closed disc {𝑧 ∈ ℂ ∶  |𝑧| ≤ 𝑛} can be 

approximated arbitrarily by a polynomial. So for (𝑛𝑛 sin 𝑛!𝜋𝑧), n 𝜖ℕ, one can find a polynomial 𝑃𝑛(z) such that 

|𝑷𝒏(𝒛) − 𝒏𝒏 𝐬𝐢𝐧 𝒏!𝝅𝒛)|< 𝟏
𝒏
 , for  |𝒛| ≤ 𝒏. 
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Let the formal series  

𝑭(𝒛, 𝒕) = ∑ 𝑷𝒏(𝒛)𝒕𝒏∞
𝒏=𝟎 . 

Now for every 𝑧 ∈ ℂ ℚ,⁄  the bounded sequence {sin𝑛!𝜋𝑧)}𝑛=1 
∞ is divergent as 𝑛 extends to infinity.  Suppose 

there exist a sub-sequence of  �𝑛𝑗�𝑗=1
∞

such that lim𝑗→∞ sin 𝑛!𝜋𝑧 =  𝜆, where 𝜆 is a complex number. Using the 

previous inequality we get 

|𝑷𝒏𝒋(𝒛) − 𝒏𝒋
𝒏𝒋 𝐬𝐢𝐧 𝒏𝒋!𝝅𝒛)|<  𝟏 

𝒏𝒋
 , for  j ≤ |𝒛|, 

Which gives that  

|𝑷𝒏𝒋(𝒛)| ≥ |𝒏𝒋
𝒏𝒋 𝐬𝐢𝐧 𝒏𝒋!𝝅𝒛| -  𝟏 

𝒏𝒋
 , ∀  j ≥ |𝒛|. 

|𝑷𝒏𝒋(𝒛) ≥ 𝟏
 𝟐 

|𝝀|𝒏𝒋
𝒏𝒋, 

For 𝑛𝑗 large enough, 𝐹(𝑧, 𝑡) is divergent ∀𝑛 ∈ ℕ. 

On the other hand, for x∈ ℚ let x = 𝑙
𝑚

 where 𝑙,𝑚 ∈ ℤ and the gcd(𝑙,𝑚) = 1. Then for 𝑛 > 𝑚   

|𝑷𝒏(𝒙)| ≤ | 𝒏𝒏 𝐬𝐢𝐧 𝒏!𝝅𝒙) + 𝟏
𝒏

| = 𝟎 + 𝟏
𝒏

. 

So 𝐹(𝑥, 𝑡) is convergence. 

The Corollary indicates that the whole rational numbers ℚ is a convergence set. Now 

Since the unit interval [0, 1] is compact and simply connected set it's a convergence set. In [3] we proved that a 

finite intersection of convergence sets is a convergence set, so the intersection of the ℚ and the unit interval is a 

convergence set. 

2.6. Example 

The set of rational number in the unit interval, K = [0, 1] \ ℚ, is a convergence set. 

3. Conclusion  

In this paper we find that ℚ is a convergence set, which implies that ℚ is a quasi-simply-connected set, looking 

for new sets which is convergence and have other formal power series properties. 
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