American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers

http://asrjetsjournal.org/

Q is a Convergence Set

Basma Al-Shutnawi^{a*}, Mohammad Zannon^b

^a Department of Mathematics, Tafila technical university, P.O. Box 179, Tafila 66110, Jordan.

^b Department of Mathematics, Tafila technical university, P.O. Box179, Tafila 66110, Jordan.

^a basma@ttu.edu.jo

^bzanno1ms@gmail.com

Abstract

In this paper we consider the convergence sets of formal power series of the form $f(z,t) = \sum_{j=0}^{\infty} f_j(z)t^j$, where $f_j(z)$ are polynomials functions on a domain Ω in \mathbb{C} . A subset E of Ω is said to be convergence set if there is a series f(z,t) such that E is exactly the set of points z for which f(z,t) converges as a power series in t in some neighborhood of the origin. We prove that \mathbb{Q} is a convergence set.

Keywords: formal power series; convergence sets, \mathbb{Q} the set of rational numbers, quasi-simply-connected sets.

1. Introduction

Let $\mathbb{C}[z]$ be the set of polynomials in z, $\mathbb{C}[[z]]$ be the set of formal power series, and $\mathbb{C}[z][[t]]$ be the set of formal power series in t with coefficients being polynomials in z. In my dissertation [3] I considered the formal power series

$$f(z) = a_0 + \sum_{|\alpha_1|=1} a_{\alpha_1} z^{\alpha_1} + \sum_{|\alpha_2|=2} a_{\alpha_2} z^{\alpha_2} + \dots + \sum_{|\alpha_n|=n} a_{\alpha_n} z^{\alpha_n},$$

Where $\alpha_j = (\alpha_{j1}, ..., \alpha_{jn})$ are the n-multiple index and $|\alpha_j| = |\alpha_{j1}| + \cdots + |\alpha_{jn}|$. Many research concerning convergence (or formal) series [7, 1, 11, 8, 5]. The general description of these problems is given in [12]. Recently there were new researches concerning the power series when the coefficients are polynomials of two or more complex variables [2, 4, 9, 6]. Consider $F(z,t) = \sum_{m=0}^{\infty} P_m(z)t^m$. Suppose that F(z,t) as a power series in t converges for z in a set $E \subset \mathbb{C}^n$. I mentioned in my dissertation that the set \mathbb{Q} of rational numbers is a convergence set in this paper we prove this corollary.

* Corresponding author.

E-mail address: basma@ttu.edu.jo.

2. Q is a Convergence Sets

2.1. Definition [3]

A power series $f \in \mathbb{C}[[z_1, ..., z_n]]$ is said to be convergent if there is a constant C such that $|a_{k1,...,kn}| \le C^{k1+\cdots+kn}$ for all $(k_1, ..., k_n) \ne (0, ..., 0)$.

A power series f is said to be divergent if it is not convergent.

2.2. *Definition* [3]

Let $f(z,t) \in \mathbb{C}[z][[t]]$. Define the convergence set of f to be $Conv(f) = \{z \in \mathbb{C} : f(z,t) \text{ converges in } t\}$.

2.3. *Definition* [3]

A subset $E \in \mathbb{C}$ is said to be a convergence set if there exists an $f \in \mathbb{C}[z][[t]]$ such that E = Conv(f).

Moreover we proved the following theorem,

2.4. Theorem [3] Let $S = \{z_1, z_2, ...\}$ be a countable infinite subset of \mathbb{C} . Define an $F \in \mathbb{C}[z][[t]]$ by

$$F(z,t) = \sum_{n=0}^{\infty} C_n \left[\prod_{j=1}^{n} (z-z_j) \right] t^n,$$

Where $C_n = (n/\gamma_n)^n$, and

$$\gamma_n = \min\left(\frac{1}{2}\min_{1\leq j\leq n+1}|z_i-z_j|,\ 1/n\right).$$

Then Conv(F) = S.

As a corollary from this theorem we mentioned that the set of rational numbers is a convergence set, we discuss the proof in this paper.

2.5. Corollary

The set $\ensuremath{\mathbb{Q}}$ of rational numbers is a convergence set.

Proof. For $n \in \mathbb{N}$, by Weierstrass theorem see [10] any function on the closed disc $\{z \in \mathbb{C} : |z| \le n\}$ can be approximated arbitrarily by a polynomial. So for $(n^n \sin n! \pi z)$, $n \in \mathbb{N}$, one can find a polynomial $P_n(z)$ such that

$$|P_n(z)-n^n\sin n!\pi z)|<\frac{1}{n}, \text{ for } |z|\leq n.$$

Let the formal series

$$F(z,t) = \sum_{n=0}^{\infty} P_n(z)t^n.$$

Now for every $z \in \mathbb{C}/\mathbb{Q}$, the bounded sequence $\{\sin n! \pi z\}_{n=1}^{\infty}$ is divergent as n extends to infinity. Suppose there exist a sub-sequence of $\{n_j\}_{j=1}^{\infty}$ such that $\lim_{j\to\infty} \sin n! \pi z = \lambda$, where λ is a complex number. Using the previous inequality we get

$$|P_{nj}(z) - n_j^{nj} \sin n_j! \pi z)| < \frac{1}{n_j}$$
, for $j \le |z|$,

Which gives that

$$|P_{nj}(z)| \geq |n_j^{nj}\sin n_j! \, \pi z| \, \text{-} \, \frac{1}{n_j}, \, \forall \ \ j \geq |z|.$$

$$|P_{nj}(z) \ge \frac{1}{2} |\lambda| n_j^{nj}$$

For n_i large enough, F(z,t) is divergent $\forall n \in \mathbb{N}$.

On the other hand, for $x \in \mathbb{Q}$ let $x = \frac{l}{m}$ where $l, m \in \mathbb{Z}$ and the gcd(l, m) = 1. Then for n > m

$$|P_n(x)| \le |n^n \sin n! \pi x| + \frac{1}{n}| = 0 + \frac{1}{n}$$

So F(x, t) is convergence.

The Corollary indicates that the whole rational numbers $\mathbb Q$ is a convergence set. Now

Since the unit interval [0, 1] is compact and simply connected set it's a convergence set. In [3] we proved that a finite intersection of convergence sets is a convergence set, so the intersection of the \mathbb{Q} and the unit interval is a convergence set.

2.6. Example

The set of rational number in the unit interval, $K = [0, 1] \setminus \mathbb{Q}$, is a convergence set.

3. Conclusion

In this paper we find that \mathbb{Q} is a convergence set, which implies that \mathbb{Q} is a quasi-simply-connected set, looking for new sets which is convergence and have other formal power series properties.

References

- [1] S.S. Abhyankar, T.T. Moh, "A reduction theorem for divergent power series", J. Reine Angew. Math., 241(1970), pp 27-33.
- [2] B.L. Fridman, D. Ma," Osgood-Hartogs type properties of power series and smooth functions", *Pacific J. Math.*, 251(2011), pp 67-79.
- [3] B. Al-Shutnawi, "On convergence sets of formal power series", PhD dissertation, USA, 2013
- [4] B.L. Fridman, D. Ma, T.S. Neelon, "Nonlinear convergence sets of divergent power series", preprint.
- [5] R.C. Gunning, Introduction to holomorphic functions of several variables, 2nd ed, Wadsworth and Brooks/Cole, Belmont, California, 1990. pp10-100.
- [6] A. Klebano_, In the Mandelbrot set. Internet: http://home.comcast.net/_davejanelle /mandel.pdf(2013).
- [7] P. Lelong, "On a problem of M.A. Zorn", Proc. Amer. Math. Soc., 2(1951), pp 11-19.
- [8] N. Levenberg, R.E. Molzon," Convergence sets of a formal power series", Math. Z., 197(1988), pp 411-420.
- [9] D. Ma, T.S. Neelon, "On convergence sets of formal power series", preprint.
- [10] R.M. Range, Holomorphic functions and integral representations in several complex variables, 2nd ed, Springer, New York, 1986. pp 35-39.
- [11] A. Sathaye, "Convergence sets of divergent power series", J. Reine Angew. Math., 283(1976), 86/98.Kokyoroku in Math. 14, Tokyo, 1982.
- [12] K. Spallek, P. Tworzewski, T. Winiarski," Osgood-Hartogs-theorem of mixed type", *Math. Ann*, 288(1990), pp 75-88.