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Abstract 

The creation of new technologies over the last 100 years has improved the quality of human life, but the 

necessary chemical and industrial transformations have caused significant changes in the environment. The 

production of new inputs depends on the chemical processes employed and, as a consequence, must be in line 

with water and air treatments that are undoubtedly undermined by world technological development. Thus, the 

principles of physics and chemistry apply to the prediction and understanding of the release of gaseous 

pollutants into the environment, which come from the burning of fuels in automobiles. It also discusses the 

influence of aspects related to the air content fed to the engine, as well as the effect of temperature and pressure 

on the concentration of these pollutants. 
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1. Introduction 

Combustion of any fuel contributes greatly to environmental pollution due to carbon dioxide and monoxide, 

nitrogen oxides, sulphur oxides and particulate matter emissions to the atmosphere. Reducing gas emissions and 

the search for better engine performance have increased the interest day by day. It is clear that new solutions 

must be found to meet the fuel demand and environmental requirements. Bio fuels (biodiesels and alcohols) 

could be proposed as a solution for the future. Studies of the concentration of gas emissions present in the urban 

atmosphere of Brazilian cities are still scarce and are concentrated in the cities such as São Paulo, Rio de Janeiro 

and Porto Alegre [1,2,3,4,5].  

------------------------------------------------------------------------ 
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In the last decade the government has published relatories informing about gas emissions in Brazil, in general. 

Figures 1-4 are presented showing some results in the last years. 

 

Figure 1: NOx emissions by cars and commercial lights vehicles from Otto Cycle in each PROCONVE period. 

Extracted and adapted from [6] 

 

Figure 2: NOx emissons by fuel type used by vehicle. Extracted and adapted from [6] 

 

Figure 3: CO2 emissons by vehicle category. Extracted and adapted from [6] 
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Figure 4: CO2 emissons by fuel type used by vehicle. Extracted and adapted from [6] 

As can be seen, NOx gases had a considerable reduction in the vehicular emissions, otherwise CO2 has 

incresead, specially when the fuel is petrol. Generally, it was observed due to the use of new technologies, such 

as electronic injection, catalysts, and a better fuel quality, following PROCONVE stages (Brazilian Control 

Program for Air Pollution from Motor Vehicles) where each step or phase requires further reductions in 

emissions of vehicle pollutants. These data can be changed if adding results of gaseous emissions fram médium 

and small cities. In this case, one computational program could help simulating the contribution for each city. 

Then, the relatory would presente more reliable results reflecting the real condition of the air pollution in Brasil. 

Literature have published and examined the impact of different fuels and blends of them, for example, ethanol 

addition to jatropha methyl ester (JME) and they have investigated combustion characteristics such as ignition 

delay, combustion duration and emissions released from an engine fuelled with blends of fuels or pure fuel. 

Otherwise, litlle theoretical studies using modeling or simulation [7,8,9,10] have been performed to minimize 

time and costs of the experimental studies [9,11,12,13,14,15,16]. In the literature, there is no such a 

comprehensive study comparing many experimental results on the characteristics of fuel combustion. Thus, this 

work has a remarkable novelty to make up for the deficiency in the literature.  With respect to the CFD 

(Computational Fluid Dynamics) comprehensive models, Reference [7] have discussed the impact of radiative 

heat transfer in a sugarcane bagasse grate boiler. The heterogeneous combustion of sugarcane bagasse was 

simulated by considering radiation heat transfer represented by two models, namely the Approximation P1 and 

the Discrete Transfer Method (DTM). The discussion of the flue gas temperature and chemical composition 

profiles provided useful information regarding the characteristics of the internal flow and of the equipment 

operating conditions.Recently, [8] evaluated the impact of biofuels on the air quality of the city of Rio de 

Janeiro and studied the influence in the air due to the increase of biodiesel amount added to diesel (BXX) and 

etanol (BE-Diesel). As a first step, they created a base case with data collected by an automatic monitoring 

station during three months of the summer season from 2011 to 2012. The base case and scenarios were 

developed using the trajectory model OZIPR (Ozone Isopleth Package for Research) [17,18] coupled with the 

chemical mechanism SAPRC (Statewide Air Pollution Research Center). Some papers presented previously by 

[3,5,19] used OZIPR to simulate the air quality of great cities, using manual adjustment of the model 

parameters. As discussed in literature [20] although on-road vehicles are reported as the main sources of air 

pollutants in urban environments, stationary sources, such as chimneys from industry, boilers and furnaces, may 
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still make significant contributions to air pollution on these areas. Then, in the similar line to the one presented 

in [8], the authors in [20] commented that this experimental or theoretical information was also necessary on the 

production processes, such as daily operating time, raw materials used, fuel consumption rates, and whether or 

not emission control systems existed. The authors in [21] have presented a survey related to the use of some by-

products to obtain biodiesel, covering not only the traditional and most widely used acid/base catalysis, but also 

solid and enzymatic catalysis. Details of the techniques were presented and compared. The advantages and 

drawbacks of the different approaches were mentioned and analyzed. The synthesis and use of by-products from 

the vegetable oil refining industry were covered in their work. The use of the obtained biodiesel in diesel 

engines was also included, demonstrating the disparity between the number of papers related to biodiesel 

production and engine performance assessment. The authors in [22] has published an experimental work where 

diesel-based microemulsions and a surfactant/diesel blend, using ethoxylated (5 EO) nonylphenol as surfactant, 

were prepared and tested in a diesel engine to evaluate its performance and emissions specific fuel consumption 

of the microemulsion systems was greater than that of diesel, but the small droplets of water improved diesel 

combustion.Compared with diesel, an increase in carbon monoxide (CO) and nitrogen oxide (NOx) emissions 

and a decrease in black smoke emissions were obtained. In general, only microemulsions with up to 6% water 

are in accord with Brazilian diesel/biodiesel fuel regulations and specifications. Only the manuscript published 

by [9] presented a theoretical simulation of combustion ocurring in diesel engines. They reported the influences 

of steam injection on the combustion of bio fuels (biodiesels and alcohols) commonly used in terms of the 

thermodynamic properties and equilibrium combustion products including NO. In spite of using a verified 

simulation code with experimental studies [9,11,12,13,14,15,16] and computer programs, there were no 

comparison with the real concentrations of flue gases leaving engines working. Also, in the group of equilibrium 

equations (number 14) presented in the manuscript, it was noted mistakes which can compromise the developed 

program and results. A theoretical analysis were also carried out by [10] to investigate which combinations of 

coal and biomass sources widely available in Brazil are the most advantageous for co-gasification, as well as the 

optimal relative fractions of each fuel. For this purpose, they employed a thermodynamic equilibrium model, a 

tool widely used to study how particular fuel characteristics affect the composition of generated gaseous 

products. As written by [10] in their article: Experimental analysis would be costly and time-demanding, 

because of the great number of possible coal-biomass combinations (here, pure fuels and combinations) and 

corresponding relative proportions. The use of theoretical analysis, employing reliable computational 

simulations, is an alternative and attractive approach for a preliminary screening of the best options. The goal of 

this paper is to apply the equations of chemical equilibrium reactions for obtaining the gas emissions from some 

highly used fuels of the brazilian industry (ethanol, gasoline, blends of ethanol-gasoline and bio-oil) and their 

use in internal combustion engines. In addition comparisons using experimental data from previous works which 

were published [9,23,24,25] will be done and the analysis of reports of their use in internal combustion engines 

was not included, although the main task is to check the prediction of the model. Another motive for including 

the engines test results in the study is that the type of fuel and the physical properties strongly influence the 

engine‟s behavior [26]. The updating of these topics is also necessary to cover the recent published results and 

trends. 
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2. Methodology 

Theoretical model of the equilibrium combustion products and thermodynamic properties.  The model employed 

uses an equilibrium approach with a non-stoichiometric formulation [27,28]. This formulation calculates the 

product composition by performing the solution a group of equations. This equilibrium model allows calculating 

an equilibrium state with a specific number of chemical species. A list of expected species in the product must 

be established a priori. Theoretical combustion simulation of pure fuels and blends is performed by using a 

verified thermodynamic data available [9,11,13,14,15] and one computational program developed in MAPLE 

(Maplesoft 18), so as to predict or calculate equilibrium constants and combustion products (CO2, H2O, N2, O2, 

CO, H2, H, O, OH, NO). In case of any fuel used as the material, the combustion reaction used in the present 

model is written below: 

  (        )  *             +
   
→                                     

                  (1) 

The variables           are the mole numbers for each molecule or atom which will be determined when the 

system of non-linear equations is solved. Regarding the combustion in vehicles, the solutions of interest are the 

ones ocurring in temperatures (T) higher than 1000 K. Then, for low and lean combustions, no calculations are 

considered.  As presented by [9], we will be considering the six chemical reactions that occur in the combustion 

camara of the vehicle, as listed in Table 1. 

Table 1: Group of reactions and respective equilibrium equations occuring in vehicles 
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Where yi„s are the mole fraction of the combustion species in gaseous phase and p is the total pressure. The 

equilibrium constants can be calculated using the Equation 8, as follows, and the values of JANAF constants are 

listed in Table 2. Table 3 is illustrating the constants of equilibrium, Ki , as a function of temperature for the 

range (1300-3000K) used in the work.  
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Table 2: Parameters of equation (7) for each reaction specified in Table 1 

 Ai Bi Ci Di Ei 

K1 4.32E-01 -1.12E+04 2.67E+00 -7.46E-05 2.42E-09 

K2 3.11E-01 -1.30E+04 3.22E+00 -7.38E-05 3.45E-09 

K3 -1.42E-01 -2.13E+03 8.53E-01 3.55E-05 -3.10E-09 

K4 1.51E-02 -4.71E+03 6.46E-01 2.73E-06 -1.54E-09 

K5 -7.52E-01 1.24E+04 -2.60E+00 2.60E-04 -1.63E-08 

K6 -4.15E-03 1.49E+04 -4.76E+00 1.25E-04 -9.00E-09 

Table 3: Equilibrium constants for the six reactions as a function of temperature 

 1300 K 1500 K 2000 K 2500 K 3000 K 

K1 1.10E-06 1.75E-05 1.62E-03 2.51E-02 1.57E-01 

K2 1.75E-07 4.03E-06 6.64E-04 1.44E-02 1.12E-01 

K3 1.64E-01 2.63E-01 5.59E-01 8.70E-01 1.16E+00 

K4 1.06E-03 3.26E-03 2.00E-02 5.93E-02 1.22E-01 

K5 1.15E+07 5.31E+05 3.47E+03 1.67E+02 2.20E+01 

K6 6.62E+06 2.07E+05 7.66E+02 2.75E+01 3.06E+00 

In this work, the program was carried out usin the theoretical or stoichiometric amount of air to burn all the fuel, 

an excess of 10-20% of air and 10-50 % smaller than the theoretical air. In case of using ethanol as fuel, the 

quantities are:  

  
      = 0.07 mol;    

         = 0.056 mol;      
          = 0.105 mol                                   (9) 

Based on the Equation (1) where the fuel was ethanol, then the chemical equation balancing for the atoms of 

carbon (C), hydrogen (H), oxygen (O) and the global balance are given as follows: 

      (     )                                                                           (10) 

      (               )                                                          (11) 

                 (                        )                               (12) 

    (                )

 (                                                 

       )       (13) 
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where     and nf are the molar mass and mole number of the fuel fed to the carburetor,  or cfi is is molar 

fuel–air ratio, and ny is the total mole number of stream gas leaving the carburetor. The total mole number and 

the sum of the total gas composition may be described as follows: 

∑    
  
                                                                                        (14) 

and 

∑    
  
                                                                                        (15) 

According to the Figure presented in [29], vehicles in Brazil has consumed: ethanol, gasoline, blends of ethanol-

gasoline and diesel. They also informed that the addition of ethanol to Brazilian gasoline had the initial goal of 

reducing imports of petroleum derivatives and oil remains the world‟s leading fuel, with 32.6% of global energy 

consumption. Then, based on these informations, in this work, the calculations and comparisons will be done 

using pure ethanol, gasoline and blends of them.  

 

Figure 5: Brazilians automobile fleet evolution depending on the fuel used. (Extracted from [29]) 

Once fuel is chosen, pressure, temperature and the ratio between air and fuel have to be specified to solve the 

problem.  Equations (2)-(7) plus (10)-(13) will be solved giving the molar composition of the gas stream. 

3. Results and Discussion 

In order to obtain numerical solutions and confirm the reliability of the program, the combustion pressure is 

taken as 30 atm, two combustion temperature are chosen as 2000 and 3000 K, temperature of the air and fuel is 

accepted as 300 K before combustion reaction. The properties of the fuels are given in literature [30]. Figs. 6–11 

demonstrate the influence of the pressure and temperature on the mole fractions of three combustion products at 

equilibrium for commonly used fuels for lean, stoichiometric and rich combustion conditions. 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2020) Volume 68, No  1, pp 152-165 

159 

 

Figure 6: Effect of pressure on the molar concentration of CO2 for three amounts of ethanol fed to the 

combustion camera at 2000K 

 

Figure 7: Effect of pressure on the molar concentration of CO2 for three amounts of ethanol fed to the 

combustion camera at 3000K 

Figs. 6 and 7 demonstrate the CO2 formation with respect to pressure for lean, stoichiometric and rich 

combustion conditions. It is clear that CO2 increases, as pressure rise in the temperature of 3000 K, on the other 

hand, the concentration keeps almost constant for lower temperature of 2000 K. While stoichiometric and lean 

give the highest concentration results, rich air feed give the lowest results. Using stoichiometric and lean air feed 

give close results in terms of the concentration of the CO2. It is obvious from the figure that equilibrium mole 

fractions of the CO2 remarkably reduce with increasing temperature. Although the similar trend is seen, more 

CO2 formation occurs at the rich combustion conditions. The change of the CO2 with respect to temperature of 

the camera is illustrated comparing the Fig. 6 to Fig 7. Whilst the mole fraction of CO2 is constant with pressure 

at 2000K, the one increase with pressure at 3000 K. As expected, the equilibrium mole fraction of CO2 

decreases with increasing temperature of combustion câmera. 

The author in [31] has commented that since ethanol and other „„oxygenated‟‟compounds contain oxygen, their 

combustion in automobile engines is more complete. The result is a substantial reduction in CO emissions. As 

the same of a graph presented by [25], Figs. 8 and 9 show that CO emissions does not show a specific increase 

or decrease pattern [32]. 
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Figure 8: Effect of pressure on the molar concentration of CO for three amounts of ethanol fed to the 

combustion camera at 2000K 

The author in [9] has published that as expected, more CO is released in the rich combustion conditions 

compared to the lean combustion conditions because of higher carbon concentrations, and observing the Figs. 8 

and 9, we had the same result. Even though the minimum CO is formed with ethanol in the lean combustion 

conditions, it is formed with methanol in the rich combustion conditions. It may be seen from the figures that 

lower CO is formed with raising temperature of the combustion. 

 

Figure 9: Effect of pressure on the molar concentration of CO for three amounts of ethanol fed to the 

combustion camera at 3000K 

 

Figure 10: Effect of pressure on the molar concentration of NO for three amounts of ethanol fed to the 

combustion camera at 2000K 
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Figure 11: Effect of pressure on the molar concentration of NO for three amounts of ethanol fed to the 

combustion camera at 3000K 

Figs. 10 and 11 illustrate the mole fraction of NO with respect to pressure for three conditions of fed air 

injection. For both temperatures, the NO formation diminishes in the rich combustion conditions due to lower 

oxygen concentrations. The combustion of biodiesels leads to further NO formation compared to the alcohols 

and DF in both of the lean and rich combustion conditions.  The decrease rate of NO with respect to increasing 

air injection ratio is higher for high temperature (3000 K) compared to that of the other one in the rich, 

stoichiometric and lean combustion conditions. In the all combustion conditions, the reduction rate is similar to 

each other for all temperatures given in the study. It may be seen from the two figures that the lowest NO 

formation is obtained with the temperature combustion of 2000 K. Comparing published data (    ) with results 

obtained using the program developed in this work (   ). 

      
   
   

   
  

 
 
                                                                       (16) 

Table 4: Comparisons of NOX emissions at different conditions with different data published. (2000 K) 

Reference  p/atm Fuel RPM     
   

     
   R. D. 

[23] 12 atm diesel 1200-1800 150 ppm 300 100 

[24] 2.72 – 4.08 gasoline 2500 25-50 ppm 495 890 

[33,9] 
 = 1.2 (30 atm) ethanol  0.4.10-4 10-5 75 

 0.6 ethanol  19x10-4 30x10-4 58 

[13] 
 1.2 (30 atm) diesel  0.7x10-4 0.3x10-4 57 

 0.6 diesel  20x10-4 48x10-4 140 

[25] 

3.4 atm gasoline 2000 1400-2300 535 62-77 

5.1 atm gasoline 2000 1000-2500 491 51-80 

8.5 atm gasoline 2000 2500 452 82 

30 ethanol 5000 600-2500 480 20-81 

30 gasoline 5000 750-1600 535 29-67 
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Table 5: Comparisons of CO emissions at different conditions with different data published 

Reference  p/atm Fuel RPM    
   

    
   R. D. 

[22] 

0.33 kW 

 

 

diesel 

 

 

3500 

470 ppm 757 61.0 

0.67 440 630 47.7 

1.00 430 560 30.2 

1.33 432 522 20.8 

1.67 379 497 31.1 

2.00 430 374 13.0 

[24] 2.72 – 4.08 gasoline 2500 9.5-11.0 % 12.2% 28.4-10.9 

[34]  gasoline 2000-3000 3.5% 2.2% 37 

[25] 
0.-6.80 psi ethanol 2000 0.5 – 1.5% 0.4% 20-73 

0.-6.80 gasoline 2000 2.5-2.9 % 2.2% 13.7-24.1 

[33,9] 
 = 1.2 ethanol  4.9.10-2 2.1x.10-2 57.1 

 = 0.6 ethanol  35.0.10-7 10-7 97.0 

[13] 
 = 1.2 diesel  6.2.10-2 2.2x10-2 64.5 

 = 0.6 diesel  45.0.10-7 72.10-7 60.0 

Table 6: Comparisons of CO2 emissions at different conditions with different data published 

Reference  p/atm Fuel RPM     
   

     
   R. D. 

[24] 2.72 – 4.08 gasoline 2500 6.5-7.5 % 12.2 % 87-63 

[34]  gasoline 2000-3000 12.0-12.4% 12.3% 2.5-0.8 

[33,9] 
30 atm  = 1.2 ethanol  8.95x10-2 7.0x10-2 21.8 

 = 0.6 ethanol  7.75x10-2 6.0x10-2 22.6 

[13] 
30 atm  = 1.2 diesel  9.7x10-2 14x10-2 44.4 

 = 0.6 diesel  8.5x10-2 8.5x10-2 0.0 

This model was considered satisfactory when the deviation between model predictions and experimental values 

as calculated by equation 16 was smaller than 35%, the authors in [35] consider deviations up to 40 % 

appropriate for predictions using an adapted equilibrium model. According to this criterion, our calculation 

showed that the proposed model was caonsidered satisfactorily accurate for temperatures from 2000 to 3000 K 

and a wide range of c.c and H C values, as seen in Tables 4-6. The larger deviations (> 40 %) from chemical 

equilibrium were observed for the data of [13], all NOX results [24,33]. As already commented, there is an error 

in the Gonca‟s article [13] and for the experimental data of others researchesrs, the problem could be linked due 

to the short residence time (1.4 s) in the camera or the simulated composition of the fuel that is not the same of 

in the experimental studies. The results of the proposed model were also compared to predictions of the 

equilibrium model of the [9]. Tables 4-6 show the equilibrium composition for a proposed modelo of three 

major species at 30 atm and at temperature of 2000 K. We supposed that due to the error made by this author, 

there were some results that were not satisfactorily predicted. The highest deviations of the proposed model of 
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the results are obtained for NO concentration in general.  

4. Conclusions 

This study work evaluated the potentiaties of a thermodynamic equilibrium model which was employed to 

predict the composition of a flue gas released from a combustion camera, requiring a reduced amount of 

information. This model proved to be satisfactory, comparing its predictions to experimental and simulated data 

available in the literature at high temperature (2000 ≤ T ≤ 3000 K). The study of the combution of the traditional 

fuels such as ethanol, gasoline and biodiesel in real operating conditions required equations and data available to 

achieve in literature. Temperature effect was observed in the predictions of the equilibrium model; the product 

compositions showed some relationships with the changing in the air ratio for reaction.  Based on technical 

criteria, suitable conditions for obtaining low concentrations of undesirable products in the flue gas and to use in 

chemical combustion process were identified for more elevetad temperature and excess of air Another aspect 

evaluated was the content of undesirable nitrogen oxide in the gaseous products. The results showed that is not 

possible to obtain a reliable result for this compound anr it has to be more investigated. Otherwise, the contents 

of CO2 and CO in the products were higher than the values recommended in the experimental chemical model.  

5. Recommendations 

Researchers who have been working with experimental engines should measure the temperature and pressure of 

the gaseous systems specially at the entrance and exit of the combustion chamber.  
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