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Abstract 

Over the past years, distributed denial-of-service (DDoS) attacks on Internet services and websites have 

dramatically increased. Several research teams designed defensive methodologies to handle the DDoS attacks. 

Using machine learning-based solutions have enabled researchers to detect DDoS attacks with complex and 

dynamic patterns. In this work, a subset of the CICIDS2017 dataset, including 200K samples and 84 features, 

was used to analyze the features and build models. A correlation analysis, as well as a tree-based feature 

importance exploration, were performed in the feature engineering step. Next, decision tree and support vector 

machine models were trained and tested to classify DDoS and Benign attacks. The results revealed that “Flow 

ID,” “SYN Flag Cnt,” and “Dst IP” had the most impact on attack detection. Also, the machine learning models 

classified the DDoS attacks, where the accuracy rates of close to 100% were achieved. The decision tree models 

showed slightly better performance than linear support vector machines. The results in this work highly matched 

the outcome of the original paper, which was to replicate. 

Keywords: Attack Prediction; DDoS; Machine Learning. 

1. Introduction  

Cyber-security attacks are offensive acts that hackers use to target websites, computer networks, and devices. 

Among cyber-attacks, denial-of-service (DoS) or distributed denial-of-service (DDoS) attacks refer to actions 

that attempt to disrupt access to websites or networks [1].  
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Hackers often build a software application installed on a computer to plan DDoS attacks, and they call the 

computer/machine a botnet [2]. The botnets controlled by hackers are also considered to be malware or an 

infected network (machine) from which DDoS attacks are launched [3]. A DDoS attack usually occurs in three 

steps. First, the execution message is initiated by an attacker and sent to the program controlling the system, 

referred to as a “control master program.” When the control master program receives the execution command, a 

new message is generated and delivered to another software program called an “attack daemon”; this is the 

second step. Finally, once the attack message is received, the daemon begins to attack the targeted service or 

network, which is usually called the “victim” [4]. Researchers have shown that DDoS attacks have increased 

over the past years, and this type of attack will potentially become a top security issue and the main reason for 

business and website interruption. Also, high-tech governmental resources in various countries have mentioned 

that DDoS attacks are among the most popular methods that crackers have used to disrupt official websites [5]. 

DDoS attack detection has been of interest to researchers over time. Since the number of Internet of Things 

(IoT) services has increased, DDoS attacks have grown massively. Therefore, computer scientists and network 

practitioners have sought various approaches to detect DDoS attacks and attempt to predict a given attack [6]. 

Rule-based algorithms have been developed to detect such attacks but have not been successful due to the 

complicated nature of DDoS, where many variables play important roles [7]. Prasad and his colleagues develop 

a machine-learning algorithm using the CICIDS2017 dataset, where an XGBOOST algorithm was trained and 

produced an accuracy rate close 100%. They used the entire dataset, which included over 1.2 million samples 

where a binary classifier detected DDoS vs. Benign group [8]. 

2. Data and Methods 

The original balanced CICIDS2017 dataset is often used for product-level machine learning development, which 

included over one million samples. In this work, a significant fraction of data was utilized for data analysis and 

machine learning model development. The samples associated with each class (DDoS vs. Benign) were 

separated and randomly shuffled. Next, 100K samples per class were selected so that a total number of 200K 

sampled formed the new dataset in this project; all the features from the original dataset were considered. 

2.1. Data Preparation 

The dataset contained both numerical and categorical features where 77 features were categorial, and the 

remaining features were numerical. The machine learning algorithms often require numerical data; therefore, the 

categorical data must be converted to numerical features.   

2.2. One-Hot Encoding 

Various approaches have been developed to convert categorical data to numeric values. One-Hot encoding 

having different implementation is a popular method used in data science projects to convert categorical data. In 

this approach, the number of unique values is counted per feature, and then, a unique index is assigned to each 

category. This approach, which is very simple and fast, is similar to indexing keys in a dictionary.  

2.3. Timestamp 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2020) Volume 66, No  1, pp 95-104 

97 
 

Timestamps are often considered as specific numeric data, which are essential in particular machine learning 

model development. In the dataset, after dropping all NaN values, the timestamps converted to absolute total-

second values for feature engineering and ML section. 

2.4. Data Normalization 

This step refers to a process where each column representing a given feature is normalized to [-1, +1] or [0, +1] 

depending on machine learning models that are used. The concept of data normalization is to map data into an 

interval where cost functions of machine learning models work. Also, the data normalization, which is also 

called standardization, speeds up the training process and allows the models to be converged faster. To 

normalize data, different algorithms exist, such as normalization using minimum and maximum (Min-Max 

Scalar) of data or standard deviation and average of data. In this project, the Min-Max method (Equation 1) was 

applied to each feature column, which means the data were standardized for each feature separately. 

        
      

         
                (1) 

2.5. Feature Engineering 

This step refers to a process features in a dataset that were analyzed, and the importance of each feature and 

contribution to target variables are discovered using different methods. For instance, the canonical correlation 

scores between each feature and target variable among all samples demonstrate how a given feature is 

associated with the output. Another method is to decision tree feature importance capability. In this approach, a 

decision tree model is trained using the data where the importance of each feature is evaluated by a metric 

referred to as node impurity. Such a metric is weighted by the probability of a node in the tree [9]. 

2.6. Machine Learning Models 

Prasad and his colleagues employed the XGBOOST model to predict DDoS attacks, which was a binary 

classification task to categorize DDoS and Benign samples [8]. In this work, two other machine learning 

techniques are used which are decision tree and support vector machine with a linear kernel, respectively. These 

two models have different behaviors so that a comparison between their results as well as Prasad’s XGBOOST 

allows them to understand better how much a machine learning-based defensive mechanism against DDoS 

might be accurate and reliable.   

2.7. Decision Tree 

One of the supervised machine learning algorithms that can be used for both classification and regression tasks 

is called a decision tree. In binary classification, this algorithm can be considered as a binary tree structure that 

splitting data into two subsets is performed based on specific criteria so-called decision rules. The tree is 

growing top-down, and each node an attribute which is classifying training local samples are selected. The 

process of splitting continues until the best classification occurs or all attributes are employed. Selecting 

attributes is the most challenging part of training a decision tree algorithm. Various methods exist to select the 
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best attribute when splitting data into smaller subset which are 1) information gain and 2) Gini index. The 

entropy changes when a new splitting occurs. Information gain is a measure which is affected by changes in 

entropy. On the other hand, the Gini metric is measuring how many times an attribute is incorrectly selected so a 

lower Gini score offers better performance [10].  

2.8. Support Vector Machine – Linear Kernel 

The essential idea behind the support vector machine is to map data from data space to another space using a 

function so-called kernel or kernel function. Separating data using any liner classifier is almost impossible in 

this scenario so that a given kernel maps the data into another space where a massive number of hyperplanes is 

created. The hyperplanes are linearly separable, but many classifiers can separate data. The optimization method 

in SVM is to find a hyperplane having the maximum distance from support vectors (classifiers). SVM is a 

sophisticated algorithm that became popular because of producing high-quality results to recognize handwriting. 

Several kernels exist in the SVM algorithm, including linear, polynomial, and radial basis function (RBF). SVM 

Linear is one of the base models often used in a binary classification task to demonstrate the quality of 

classification [11]. 

3. Results and Discussions 

The data processing steps were completed, including data preparation/cleaning, One-Hot encoding, and 

normalization, as mentioned in the previous section. It is worth mentioning that tree-based algorithms such as 

decision tree work with non-normalized data as decision rules are not sensitive to the data range. However, the 

normalization was required for SVM Lin model development. The results of data processing steps are stored in 

a data-frame shown in Figure 1. 

 

Figure 1: Sample of preprocessed data. The entire data-frame contains 200K rows and 84 features 

3.1. Feature Engineering 

Calculating the correlation matrix across features defines the relationship between elements as well as their 

contribution to target variables. In simple words, a higher correlation score between a given feature and target 

variables suggest that the feature contributes more in the output so that it plays a more prominent role in model 

development. During correlation analysis, NaN scores were produced for nine features that were removed from 

the study. Figure 2 illustrates the correlation scores of 74 features and the target variable. As seen, the scores 
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with lighter colors offer higher scores, whereas darker areas indicate lower correlation scores. The list of 

features is found in Table 1 of the Appendix. 

 

Figure 1: Correlation matrix of features against each other and target variable 

In the next step, the correlation scores of the target variable (DDoS/Benign) vs. all features, which are the last 

column in the above figure, were extracted. Then, the correlation scores of the target variable were sorted in the 

descending order, and the first ten features having higher correlation scores were selected. The results which are 

shown in Figure 3 demonstrate that “Flow ID,” “SYN Flag Cnt,” and “Dst IP” are highly correlated with the 

target variable. The results from correction analysis revealed that Flow ID is the top feature. Prasad and his 

colleagues also mentioned that Flow ID is the prime feature in their investigation. Flow ID is number derived 

from Source and Destination IP according to the dataset description. The high correlation score between Flow 

ID and the target value suggests that an attack detection system can be designed using only Flow ID as the main 

feature.  
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Figure 2: The correlation scores of the top 10 features where Flow ID has a score of 77.45%, which shows this 

feature has the highest impact on the output. 

Discovering feature importance through a decision tree model was another method in feature engineering that 

was performed. As described briefly above, the contribution of features to training a decision tree model can be 

extracted using a bottom-up approach from the deepest layer to the top layer. Through this journey, the values of 

each decision rule (i.e., Gini index) are extracted, and their probability against the final class probability is 

calculated, demonstrating how much a given feature had an impact on the final results.  The features shown in 

Figure 4 are in ascending order where “Fwd Seg Size Min,” “Flow Byte/s,” and “Flow Pkt/s” are the top 3 

features. The results also revealed that “Flow ID” is also in the top 10 features, which agreed with the finding 

using the correlation method. A dimensionality reduction is sought through feature engineering In a complex 

problem where many features are provided. In such a situation, the intersection of results for the feature 

engineering methods used is extracted, and the set of features is introduced as the essential features having a 

high impact on a classification task. Using the same concept, discovering the intersection of correlation and 

feature importance methods showed that “Flow ID,” “SYN Flag Cnt,” and “Dst IP” are the most practical 

features to classify DDoS and Benign attack in the dataset.  

 

Figure 3: Feature importance analysis using a decision tree trained model 

 

3.2. Machine Learning 

To demonstrate the robustness and reproducibility of the machine learning model development using all the 

features, randomly five training and testing datasets (75% vs. 25%) were generated and decision tree, and SVM 

Linear models were trained using identical datasets in each run. The results showed that the decision tree models 

were the best model as they performed slightly better than SVM Lin. The results of testing datasets shown in 

Figure 5 revealed that Prasad’s approach and its findings were replicated in this experiment. Figure 7 illustrates 
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the end-to-end machine learning pipeline (inspired by [12]) to predict DDoS attacks.  

 

Figure 4: Training and testing datasets were randomly generated five times to train Decision Tree and SVM Lin 

models. The results on testing datasets show DS performs slightly better. 

A classification report was generated based on the results from one of the above experiments to explore other 

evaluation metrics in this binary classification. The outcome of the analysis showed that the model performance 

of different parameters was very high similar to accuracy rates. Precision, recall, and F1-score were calculated, 

and macro and micro average were measured for each metric. The samples of each class for testing the model is 

shown in Support column Figure 6. Precision refers to positive predict value; recall represents the sensitivity of 

the model, and the F1 score is a similar metric to accuracy while considering both precision and recall. In the 

case of data imbalanced, F1 scores are more accurate, but in data balanced, both accuracy rate and F1 scores are 

similar.  

 

Figure 5: Classification report for one of the experiments show the models performed well 

4. Conclusion 

DDoS attacks analysis and detection were performed using machine learning methods. In this work, a subset of 

the CICIDS2017 dataset was utilized, which included 200K samples of DDoS and Benign classes. The data 

contained 84 categorical and numerical features in total, where one feature was dropped, so that feature 

engineering and machine learning model development were completed with 83 features. A correlation analysis 

and feature importance exploration using a decision tree were employed in feature engineering. The results 

showed that “Flow ID,” “SYN Flag Cnt,” and “Dst IP” were the most practical features. Also, the results of 
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machine learning models, which included decision tree and linear support vector machine models, demonstrated 

that DDoS and Benign attacks were classified where the accuracy rates of around 100% were achieved. The 

replication of the original paper was completed, and other machine learning models can be considered for future 

work. 
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Appendix 

Table 1: Correlation scores of Nan values were removed, and 75 features remained 

 

Index Features Index Features Index Features

1 Src Port 26  Bwd IAT Tot 51  Fwd Seg Size Avg

2  Dst Port 27  Bwd IAT Mean 52  Bwd Seg Size Avg

3  Protocol 28  Bwd IAT Std 53  Subflow Fwd Pkts

4  Flow Duration 29  Bwd IAT Max 54  Subflow Fwd Byts

5  Tot Fwd Pkts 30  Bwd IAT Min 55  Subflow Bwd Pkts

6  Tot Bwd Pkts 31  Fwd PSH Flags 56  Subflow Bwd Byts

7  TotLen Fwd Pkts 32  Bwd PSH Flags 57  Init Fwd Win Byts

8  TotLen Bwd Pkts 33  Fwd Header Len 58  Init Bwd Win Byts

9  Fwd Pkt Len Max 34  Bwd Header Len 59  Fwd Act Data Pkts

10  Fwd Pkt Len Min 35  Fwd Pkts/s 60  Fwd Seg Size Min

11  Fwd Pkt Len Mean 36  Bwd Pkts/s 61  Active Mean

12  Fwd Pkt Len Std 37  Pkt Len Min 62  Active Std

13  Bwd Pkt Len Max 38  Pkt Len Max 63  Active Max

14  Bwd Pkt Len Min 39  Pkt Len Mean 64  Active Min

15  Bwd Pkt Len Mean 40  Pkt Len Std 65  Idle Mean

16  Bwd Pkt Len Std 41  Pkt Len Var 66  Idle Std

17  Flow IAT Mean 42  FIN Flag Cnt 67  Idle Max

18  Flow IAT Std 43  SYN Flag Cnt 68  Idle Min

19  Flow IAT Max 44  RST Flag Cnt 69  Flow ID

20  Flow IAT Min 45  PSH Flag Cnt 70  Src IP

21  Fwd IAT Tot 46  ACK Flag Cnt 71  Dst IP

22  Fwd IAT Mean 47  URG Flag Cnt 72  Flow Byts/s

23  Fwd IAT Std 48  ECE Flag Cnt 73  Flow Pkts/s

24  Fwd IAT Max 49  Down/Up Ratio 74  Timestamp

25  Fwd IAT Min 50  Pkt Size Avg 75  Label
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Figure 7: Machine learning model development end-to-end pipeline 

 


