Relationship of Bell's Polynomial Matrix and \boldsymbol{k}-Fibonacci Matrix

Mawaddaturrohmah ${ }^{\text {a }}$, Sri Gemawati ${ }^{\mathrm{b}^{*}}$
${ }^{a, b}$ Department of Mathematics, University of Riau, Pekanbaru 28293, Indonesia
${ }^{a}$ Email: mawadda_fisabilillah@ymail.com
${ }^{b}$ Email: sri.gemawati@lecturer.unri.ac.id

Abstract

The Bell's polynomial matrix is expressed as B_{n}, where each of its entry represents the Bell's polynomial number.This Bell's polynomial number functions as an information code of the number of ways in which partitions of a set with certain elements are arranged into several non-empty section blocks. Furthermore, the k Fibonacci matrix is expressed as $F_{n}(k)$, where each of its entry represents the k-Fibonacci number, whose first term is 0 , the second term is 1 and the next term depends on a positive integer k. This article aims to find a matrix based on the multiplication of the Bell's polynomial matrix and the k-Fibonacci matrix. Then from the relationship between the two matrices the matrix Y_{n} is obtained. The matrix Y_{n} is not commutative from the product of the two matrices, so we get matrix Z_{n}. Thus, the matrix $Y_{n} \neq Z_{n}$, so that the Bell's polynomial matrix relationship can be expressed as $B_{n}=F_{n}(k) Y_{n}=Z_{n} F_{n}(k)$.

Keywords: Bell's Polynomial Number; Bell's Polynomial Matrix; k-Fibonacci Number; k-Fibonacci Matrix.

1. Introduction

Bell's polynomial numbers are studied by mathematicians since the 19th century and are named after their inventor Eric Temple Bell in 1938[5]. Bell's polynomial numbers are represented by $B_{n, k}$ for each n and kelementsof the natural number, starting from $B_{n, 1}=x_{n}$ and $B_{n, n}=x_{1}^{n}$ [2, p. 135]. Bell's polynomial numbers can be formed into Bell's polynomial matrix so that each entry of Bell's polynomial matrix is Bell's polynomial number and is represented by B_{n} [11].

[^0]Reference [1] discuss the relationship of Bell's polynomial numbers and Stirling number of the second kind involving Bell's number, Reference [5] discuss the relationship between repetition of partition vectors for Bell's polynomial number, Reference [6] discusses Bell's polynomial number involving binomial lines, Qi and his colleagues [7] define the relationship between Bell's polynomial number andStirling numbers of the first kind and Stirling numbers of the second kind, Wang and Wang [10] discuss the relationship of the Bell's polynomial matrix by involving the Pascal matrix and the Stirling matrix. Reference [11] also define the relationship of the Bell's polynomial matrix with the Fibonacci matrix, and from the relationship of the two matrices matrix M_{n} and matrix N_{n} are obtained, so the Bell's polynomial matrix is defined as $B_{n}=F_{n} M_{n}$ and $B_{n}=N_{n} F_{n}$. The k Fibonacci number is discovered by [3]. The k-Fibonacci number is denoted by $F_{k, n}$ for each k and n elements of the natural number. The k-Fibonacci number can be formed into a k-Fibonacci matrix and denoted by $F_{n}(k)$. Reference [4] discuss the k-Fibonacci modulo m, Reference [8] discuss the relationship between the k-Fibonacci sequence and the generalization of the k-Fibonacci sequence, Wahyuni and his colleagues [9] discuss the identity associated with the k-Fibonacci sequence modulo ring Z_{6} and R_{n}. Reference [3] also defines the relationship of the k-Fibonacci matrix with Pascal matrix, and from the relationship of the two matrices L_{n} matrix and Rn matrix are obtained, so the Pascal matrix is defined as $P_{n}=F_{n}(k) L_{n}$ and $P_{n}=R_{n} F_{n}(k)$ for each element n and k natural numbers. This article discusses the Bell's polynomial matrix involving the k-Fibonacci matrix $F_{n}(k)$ and the inverse k-Fibonacci matrix $F_{n}^{-1}(k)$ which aims to find two matrix forms. Furthermore, by studying the relationship of the Bell's polynomial matrix and the k-Fibonacci matrix, the second part discusses the supporting theory of the Bell's polynomial matrix and the k-Fibonacci matrix, in the third part the results of the relationship between the two Bell's polynomial matrices and the k-Fibonacci matrix, and in the fourth section presents the conclusion of this research.

2. Bell's Polynomial Matrix and \boldsymbol{k}-Fibonacci Matrix

Bell polynomial numbers are defined by Comtet [2, p. 133] in Definition 1.

Definition 1 The Bell's polynomialare the polynomials $B_{n, k}=B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)$ in infinite numbers of variables x_{1}, x_{2}, \ldots,defined by formal double series expansion

$$
\begin{aligned}
& \Phi=\Phi(t, u):=\exp \left(u \sum_{m \geq 1} x_{m} \frac{t^{m}}{m!}\right)=\sum_{n, k \geq 0} B_{n, k} \frac{t^{m}}{n!} u^{k}, \\
& =1+\sum_{n \geq 1} \frac{t^{m}}{n!}\left\{\sum_{k=1}^{n} u^{n} B_{n, k}\left(x_{1}, x_{2}, \ldots\right)\right\},
\end{aligned}
$$

or, the amount is the same as the series expansion
$\frac{1}{k!}\left(\sum_{m \geq 1} x_{m} \frac{t^{m}}{m!}\right)^{k}=\sum_{n \geq k} B_{n, k} \frac{t^{n}}{n!}, k=0,1,2, \ldots, n$.

Based on the definition of Bell's polynomial number, Comtet [2, p. 134] gives Theorem 2 for Bell's polynomial
number.

Theorem 2 Bell's polynomial numbers have integer coefficients, where the number equalsk and the weight equals n expressed by

$$
\begin{equation*}
B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)=\sum \frac{n!}{c_{1}!c_{2}!\ldots c_{n-k+1}!}\left(\frac{x_{1}}{1!}\right)^{c_{1}}\left(\frac{x_{2}}{2!}\right)^{c_{2}} \ldots\left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{c_{n-k+1}} \tag{1}
\end{equation*}
$$

The sum is taken over all rows $c_{1}, c_{2}, \ldots, c_{n-k+1}$ for nonnegative integers such that up to two conditions the following are met:
(i) $c_{1}+c_{2}+\cdots+c_{n-k+1}=k$,
(ii) $c_{1}+2 c_{2}+3 c_{3}+\cdots+(n-k+1) c_{n-k+1}=n$.

Then the Bell's polynomial numbers to n is the number
$B_{n, k}=B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)$.

Proof.Proof of this theorem can be seen in Comtet [2, p. 134].

The Bell's polynomial matrix is a lower triangular matrix where each entry is a Bell's polynomial number. Wang and Wang [11] provide the Bell's polynomial matrix in Definition 3.

Definition 3 For each natural number n, the Bell's polynomial matrix $n \mathrm{x} n$ with each entry being the Bell's polynomial numbers is expressed as

$$
\begin{equation*}
\left(B_{n}\right) i, j=\left[B_{i, j}\right] \text { for each } i, j=1,2,3, \ldots, n . \tag{2}
\end{equation*}
$$

Based on the Bell's polynomial matrix definition, the general form of the Bell's polynomial matrix is stated as follows:
$B_{n}=\left[\begin{array}{ccccc}B_{1,1} & B_{1,2} & B_{1,3} & \cdots & B_{1, j} \\ B_{2,1} & B_{2,2} & B_{2,3} & \cdots & B_{2, j} \\ B_{3,1} & B_{3,2} & B_{3,3} & \cdots & B_{3, j} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ B_{i, 1} & B_{i, 2} & B_{i, 3} & \cdots & B_{i, n}\end{array}\right]$.

The next discussion is the k-Fibonacci number. The k-Fibonacci number is defined by Falcon [4] in Definition 4.

Definition 4For each natural number n and k, the k-Fibonacci number is defined as
$F_{k, n+1}=k F_{k, n}+F_{k, n-1}$ for $n \geq 1, \quad$ (3)with initial conditions $F_{k, 0}=0$ and $F_{k, 1}=0$.

Furthermore, like the Bell's polynomial matrix, the k-Fibonacci matrix is also a lower triangular matrix with each entry a k-Fibonacci number. Reference [3] gives the definition of the k-Fibonacci matrix in Definition 5.

Definition 5For each naturalnumber n, the k-Fibonaccimatrix $n \mathrm{x} n$ whose entry is k-Fibonacci numbers expressed by $F_{n}(k)=\left[f_{i, j}(k)\right]$, for each $i, j=1,2,3, \ldots, n$, are defined as

$$
f_{i, j}(k)=\left\{\begin{array}{c}
F_{k, i-j+1}, \text { if } i \geq j, \tag{4}\\
0, \text { if } i<j .
\end{array}\right.
$$

Based on the definition of the k-Fibonacci matrix, the general form of k-Fibonacci is stated as follows:
$F_{n}(k)=\left[\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ F_{k, 2} & 1 & 0 & \cdots & 0 \\ F_{k, 3} & F_{k, 2} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ F_{k, n} & F_{k, n-1} & F_{k, n-2} & \cdots & 1\end{array}\right]$.

Furthermore, from the general form of the k-Fibonacci matrix the k-Fibonacci matrix $F_{n}(k)$ is obtained with the main diagonal of 1 and the determinant value (det) of the k-Fibonacci matrix $F_{n}(k)$ is the result of multiplying diagonal entries, so we get $\operatorname{det}\left(F_{n}(k)\right)=1$. Because $\operatorname{det}\left(F_{n}(k)\right) \neq 0$, the k-Fibonacci matrix $F_{n}(k)$ has an inverse. Reference [3] provides a definition for the inverse k-Fibonacci matrix in Definition 6

Definition 6Let $F_{n}^{-1}(k)$ be the inverse of the k-Fibonacci matrix, for each natural number n where each entry of the inverse k-Fibonacci matrix $F_{n}^{-1}(k)=\left[f_{i, j}^{\prime}(k)\right]$, for eachi, $j=1,2,3, \ldots, n$, is defined as

$$
f_{i, j}^{\prime}(k)=\left\{\begin{array}{c}
1, \text { if } i=j, \tag{5}\\
-k, \text { if } i-1=j, \\
-1, \text { if } i-2=j, \\
0, \text { for others }
\end{array}\right.
$$

Because the k-Fibonacci matrix $F_{n}(k)$ has an inverse, then $F_{n}(k) F_{n}^{-1}(k)=I_{n}=F_{n}^{-1}(k) F_{n}(k)$ can be applied, so the k-Fibonacci matrix is an invertible matrix.Based on the definition of the inverse k-Fibonacci matrix, the general form of the inverse k-Fibonacci matrix is

$$
F_{n}^{-1}(k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & \cdots & 0 \tag{6}\\
-k & 1 & 0 & \cdots & \cdots & 0 \\
-1 & -k & 1 & \cdots & \cdots & 0 \\
0 & -1 & -k & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\
0 & 0 & 0 & -1 & -k & 1
\end{array}\right] .
$$

Based on equation (6) it can be concluded that for each entry of the inverse k-Fibonacci matrix $F_{n}^{-1}(k)$ applies to each entry pattern in thecolumn $f_{i, j}^{\prime}(k)$ with entries $1,-k,-1$ and 0 . This applies to the matrix $n \mathrm{x} n$ where the entry pattern $f_{i, j}^{\prime}(k)$ does not change.

3. Relationship of Bell's Polynomial Matrix and \boldsymbol{k}-Fibonacci Matrix

This section discusses the relationship between the Bell's polynomial matrix and the k-Fibonacci matrix. The first relationship of the Bell's polynomial matrix and the k-Fibonacci matrix involves the inverse of the k Fibonacci matrix with the Bell's polynomial matrix, so that the matrix is denoted by the matrix Y_{n} for each of the natural numbern. The relationship between the two Bell's polynomial matrices and the k-Fibonacci matrix by involves the multiplication of the Bell's polynomial matrix and the inverse k-Fibonacci matrix, so that a matrix is denoted by the matrix Z_{n} for every natural number n.

3.1. The First Relationship for the Bell Polynomial Matrix and the \boldsymbol{k}-Fibonacci Matrix

Based on the inverse of k-Fibonacci matrix in equation (5) and the Bell's polynomial matrix in equation (2), for n $=2$ multiplying the inverse k-Fibonacci matrix $F_{2}^{-1}(k)$ and Bell'spolynomial matrix B_{2} yields
$F_{2}^{-1}(k) B_{2}=\left[\begin{array}{cc}1 & 0 \\ -k & 1\end{array}\right]\left[\begin{array}{cc}x_{1} & 0 \\ x_{2} & x_{1}^{2}\end{array}\right]$.

Thus, the product of ${F_{2}}^{1}(k) B_{2}$ is expressed as a matrix Y_{2}, so a matrix Y_{2} is obtained as follows:
$Y_{2}=\left[\begin{array}{cc}x_{1} & 0 \\ x_{2}-k x_{1} & x_{1}^{2}\end{array}\right]$.

Next for $n=3$ multiplying the inverse of the k-Fibonacci matrix ${F_{3}^{-1}}^{-1} k)$ and the Bell's polynomial matrix B_{3} gives

$$
F_{3}^{-1}(k) B_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-k & 1 & 0 \\
-1 & -k & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{1} & 0 & 0 \\
x_{2} & x_{1}^{2} & 0 \\
x_{3} & 3 x_{1} x_{2} & x_{1}^{3}
\end{array}\right]
$$

Thus, the product of $F_{3}^{-1}(k) B_{3}$ is expressed as a matrix Y_{3}, so a matrix Y_{3} is obtained as follows:
$Y_{3}=\left[\begin{array}{ccc}x_{1} & 0 & 0 \\ x_{2}-k x_{1} & x_{1}^{2} & 0 \\ x_{3}-k x_{2}-x_{1} & 3 x_{1} x_{2}-k x_{1}^{2} & x_{1}^{3}\end{array}\right]$.

Next for $n=4$ multiplying the inverse of the k-Fibonacci matrix $F_{4}^{-1}(k)$ and the Bell's polynomial matrix B_{4} produces
$F_{4}^{-1}(k) B_{4}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -k & 1 & 0 & 0 \\ -1 & -k & 1 & 0 \\ 0 & -1 & -k & 1\end{array}\right]\left[\begin{array}{cccc}x_{1} & 0 & 0 & 0 \\ x_{2} & x_{1}^{2} & 0 & 0 \\ x_{3} & 3 x_{1} x_{2} & x_{1}^{3} & 0 \\ x_{4} & 4 x_{1} x_{3}+3 x_{2}^{2} & 6 x_{1}^{2} x_{2} & x_{1}^{4}\end{array}\right]$.

Thus, the product of $F_{4}^{-1}(k) B_{4}$ is expressed as a matrix Y_{4}, so a matrix Y_{4} is obtained as follows:
$Y_{4}=\left[\begin{array}{cccc}x_{1} & 0 & 0 & 0 \\ x_{2}-k x_{1} & x_{1}^{2} & 0 & 0 \\ x_{3}-k x_{2}-x_{1} & 3 x_{1} x_{2}-k x_{1}^{2} & x_{1}^{3} & 0 \\ x_{4}-k x_{3}-x_{2} & 4 x_{1} x_{3}+3 x_{2}^{2}-k x_{3} x_{2} x_{1} & 6 x_{1}^{2} x_{2}-k x_{1}^{3} & x_{1}^{4}\end{array}\right]$.

By paying attention to each entry in the matrix Y_{4} there is a matrix Y_{3} and by paying attention to each entry in the Y_{3} matrix there is a Y_{2} matrix, for $i \geq j$ all values of the Y_{n} matrix entries are listed as Table 1.

Table 1: Element values for matrix Y_{n}

Matrix $\boldsymbol{Y}_{\boldsymbol{n}}$ Entry	Matrix $\boldsymbol{Y}_{\boldsymbol{n}}$ Entry Value
$y_{1,1}$	$(1) B_{1,1}=B_{1,1}$
$y_{2,2}$	$(1) B_{2,2}=B_{2,2}$
$y_{3,3}$	$(1) B_{3,3}=B_{3,3}$
$y_{4,4}$	$(1) B_{4,4}=B_{4,4}$
$y_{2,1}$	$(-k) B_{1,1}+(1) B_{2,1}=B_{2,1}-k B_{1,1}$
$y_{3,2}$	$(-k) B_{2,2}+(1) B_{3,2}=B_{3,2}-k B_{2,2}$
$y_{4,3}$	$(-k) B_{3,3}+(1) B_{4,3}=B_{4,3}-k B_{3,3}$
$y_{3,1}$	$(-1) B_{1,1}+(-k) B_{2,1}+(1) B_{3,1}=B_{3,1}-k B_{2,1}-B_{1,1}$
$y_{4,2}$	$(-1) B_{2,2}+(-k) B_{3,2}+(1) B_{4,2}=B_{4,2}-k B_{3,2}-B_{2,2}$
$y_{4,1}$	$(0) B_{1,1}+(-1) B_{2,1}+(-k) B_{3,1}+(1) B_{4,1}=B_{4,1}-k B_{3,1}-B_{2,1}-0$
\vdots	\vdots
$y_{i, j}$	$=B_{i, j}-k B_{i-1, j}-B_{i-2, j}$

Then paying attention to each step of Table 1 by paying attention to each matrix entry $y_{i, j}$ and the matrix value Y_{n}, obtained Definition 7 can be stated.

Definition7For each natural number n, the matrix Y_{n} whose order is $n \mathrm{x} n$ with each entry $Y_{n}=\left[y_{i, j}\right]$, for each $i, j=1,2,3, \ldots, n$, isdefined as

$$
\begin{equation*}
y_{i, j}=B_{i, j}-B_{i-1, j}-B_{i-2, j} . \tag{7}
\end{equation*}
$$

From equation (7) we get the value of $y_{1,1}=x_{1}, y_{1, j}=0$ for each $j \geq 2, y_{2,1}=x_{2}-k x_{1}, y_{2,2}=x_{1}^{2},, y_{2, j}=0$ for each $j \geq 3$, and for each $i, j \geq 2, y_{i, j}=B_{i, j}-B_{i-1, j}-B_{i-2, j}$. Based on the definition of the matrix Y_{n} in equation (7), the Bell's polynomial matrix in equation (2) and the k-Fibonacci matrix in equation (4) Theorem 8 can be stated.

Theorem8 Bell's polynomial matrix B_{n} can be grouped into $B_{n}=F_{n}(k) Y_{n}$.

Proof. Since the k-Fibonacci matrix has an inverse, it can be proven that
$Y_{n}=F_{n}^{-1}(k) B_{n} .(8)$

Let $F_{n}^{-1}(k)$ be the inverse of the k-Fibonacci matrix defined in equation (5) obtained by the main diagonal of the inverse matrix $F_{n}^{-1}(k)=1$. Then, based on the Bell's polynomial matrix in equation (2) the main diagonalmatrix $B_{n}=x_{1}^{n}$ is obtained. By paying attention to the left-hand side of equation (7), if $i=j$ then $y_{i, j}=x_{1}^{i}$ and if $i>$ j then $y_{i, j}=0$. So for $i>2$ based on equation (5) and equation (2) the values of $y_{i, j}$ can be evaluated as follows:
$y_{i, j}=f_{i, i}^{\prime}(k) B_{i, j}+f_{i, i-1}^{\prime}(k) B_{i-1, j}+f_{i, i-2}^{\prime}(k) B_{i-2, j}+f_{i, i-3}^{\prime}(k) B_{i-3, j}+\cdots+f_{i, n}^{\prime}(k) B_{n, j}$,
$y_{i, j}=\sum_{k=1}^{n} f_{i, k}^{\prime}(k) B_{k, j}$.

So $F_{n}^{-1}(k) B_{n}=Y_{n}$ is obtained. Furthermore, from the definition of the matrix Y_{n} in equation (7), the Bell's polynomial matrix B_{n} in equation (2) and the k-Fibonacci matrix in equation (4), $B_{n}=F_{n}(k)$.

3.2. The Second Relationship for the Bell's Polynomial Matrix and the k-Fibonacci Matrix

Based on the Bell's polynomial matrix in equation (2) and the inverseof k-Fibonacci matrix in equation (5), for n $=2$ multiplying the Bell's polynomial matrix B_{2} and the inverse k-Fibonacci matrix $F_{2}^{-1}(k)$ yields
$B_{2} F_{2}^{-1}(k)=\left[\begin{array}{cc}x_{1} & 0 \\ x_{2} & x_{1}^{2}\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -k & 1\end{array}\right]$.

Thus, the product of $B_{2} F_{2}^{-1}(k)$ is expressed as a matrix Z_{2}, so matrix Z_{2} is obtained as follows:
$Z_{2}=\left[\begin{array}{cc}x_{1} & 0 \\ x_{2}-k x_{1}^{2} & x_{1}^{2}\end{array}\right]$.

Furthermore, for $n=3$ multiplying the Bell's polynomial matrix B_{3} and inverse k-Fibonacci matrix $F_{3}^{-1}(k)$ gives
$B_{3} F_{3}^{-1}(k)=\left[\begin{array}{ccc}x_{1} & 0 & 0 \\ x_{2} & x_{1}^{2} & 0 \\ x_{3} & 3 x_{1} x_{2} & x_{1}^{3}\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ -k & 1 & 0 \\ -1 & -k & 1\end{array}\right]$.

Thus, the product of $B_{3} F_{3}^{-1}(k)$ is expressed as a matrix 3 , so matrix Z_{3} is obtained as follows:
$Z_{4}=\left[\begin{array}{ccc}x_{1} & 0 & 0 \\ x_{2}-k x_{1}^{2} & x_{1}^{2} & 0 \\ x_{3}-3 k x_{1} x_{2}-x_{1}^{3} & 3 x_{1} x_{2}-k x_{1}^{3} & x_{1}^{3}\end{array}\right]$.

Furthermore, for $n=4$ by multiplying the Bell's polynomial matrix B_{4} and the inverse k-Fibonacci matrix $F_{4}^{-1}(k)$
produces
$B_{4} F_{4}^{-1}(k)=\left[\begin{array}{cccc}x_{1} & 0 & 0 & 0 \\ x_{2} & x_{1}^{2} & 0 & 0 \\ x_{3} & 3 x_{1} x_{2} & x_{1}^{3} & 0 \\ x_{4} & 4 x_{1} x_{3}+3 x_{2}^{2} & 6 x_{1}^{2} x_{2} & x_{1}^{4}\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -k & 1 & 0 & 0 \\ -1 & -k & 1 & 0 \\ 0 & -1 & -k & 1\end{array}\right]$.

Thus, the product of $B_{4} F_{4}^{-1}(k)$ is expressed as a matrix Z_{4}, so a matrix Z_{4} is obtained as follows:
$Z_{4}=\left[\begin{array}{cccc}x_{1} & 0 & 0 & 0 \\ x_{2}-k x_{1}^{2} & x_{1}^{2} & 0 & 0 \\ x_{3}-3 k x_{1} x_{2}-x_{1}^{3} & 3 x_{1} x_{2}-k x_{1}^{3} & x_{1}^{3} & 0 \\ x_{4}-4 k x_{1} x_{3}-3 k x_{2}^{2}-6 x_{1}^{2} x_{2} & 4 x_{1} x_{3}+3 x_{2}^{2}-6 k x_{1}^{2}-x_{1}^{4} & 6 x_{1}^{2} x_{2}-k x_{1}^{4} & x_{1}^{4}\end{array}\right]$.

By paying attention to each entry in the matrix Z_{4} there is a matrix Z_{3} and by paying attention to each entry in the $\operatorname{matrix} Z_{3}$ there is a matrix Z_{2}, for $i>j$ jall values of thematrix Z_{n} entries are listed as Table 2.

Table 2: Element values for matrix Z_{n}

Matrix Z_{n} Entry	Matrix Z_{n} Entry Value
$z_{1,1}$	$(1) B_{1,1}=B_{1,1}$
$z_{2,2}$	$(1) B_{2,2}=B_{2,2}$
$z_{3,3}$	$(1) B_{3,3}=B_{3,3}$
$z_{4,4}$	$(1) B_{4,4}=B_{4,4}$
$z_{2,1}$	$(1) B_{2,1}+(-k) B_{2,2}=B_{2,1}-k B_{2,2}$
$z_{3,2}$	$(1) B_{3,2}+(-k) B_{3,3}=B_{3,2}-k B_{3,3}$
$z_{4,3}$	$(1) B_{4,3}+(-k) B_{4,4}=B_{4,3}-k B_{4,4}$
$z_{3,1}$	$(1) B_{3,1}+(-k) B_{3,2}+(-k) B_{3,3}=B_{3,1}-k B_{3,2}-B_{3,3}$
$z_{4,2}$	(1) $B_{4,2}+(-k) B_{4,3}+(-1) B_{4,4}=B_{4,2}-k B_{4,3}-B_{4,4}$
$z_{4,1}$	(1) $B_{4,1}+(-k) B_{4,2}+(-1) B_{4,3}+(0) B_{4,4}=B_{4,1}-k B_{4,2}-B_{4,3}-0$
\vdots	\vdots
$z_{i, j}$	$=B_{i, j}-k B_{i, j+1}-B_{i, j+2}$

Furthermore, by considering each step of Table 3.2 by paying attention to each entry of the matrix $z_{i, j}$ and the value of the matrix Z_{n}, Definition 9 can be stated.

Definition9For each natural number n, the matrix Z_{n} whose order is $n \times n$ with each entry $Z_{n}=\left[z_{i, j}\right]$, for each $i, j=1,2,3, \ldots, n$, is defined as

$$
\begin{equation*}
z_{i, j}=B_{i, j}-B_{i, j+1}-B_{i, j+2} . \tag{9}
\end{equation*}
$$

From equation (9) we get the value $z_{1,1}=x_{1}, z_{1, j}=0$ for each $j \geq 2, z_{2,1}=x_{2}-k x_{1}^{2}, z_{2,2}=x_{1}^{2}$, and $z_{2, j}=0$ for each $j \geq 3$, and for each $i, j \geq 2, z_{i, j}=B_{i, j}-B_{i, j+1}-B_{i, j+2}$. Based on the definition of the matrix Z_{n} in equation (9), the Bell's polynomial matrix in equation (2) and the k-Fibonacci matrix in equation (4) Theorem 10 can be stated.

Theorem10The Bell's polynomial matrix can be grouped into $B_{n}=Z_{n} F_{n}(k)$.

Proof.Because the k-Fibonacci matrix has an inverse, it will be proven that
$Z_{n}=B_{n} F_{n}^{-1}(k)$.

Let $F_{n}^{-1}(k)$ be the inverse of the k-Fibonacci matrix defined in equation (5) obtained by the main diagonal of the inverse matrix $F_{n}^{-1}(k)=1$. Furthermore, based on the Bell's polynomial matrix in equation (2) the main diagonal matrix $B_{n}=x_{1}^{n}$ is obtained. By paying attention to the left-hand side of equation (9), if $i=j$ then $z_{i, j}=x_{1}^{i}$ and $i>j$ then $z_{i, j}=0$. So for $i>2$ based on equation (2) and equation (5) the values of $z_{i, j}$ can be evaluated as follows:
$z_{i, j}=B_{i, j} f_{j, j}^{\prime}(k)+B_{i, j+1} f_{j+1, j}^{\prime}(k)+B_{i, j+2} f_{j+2, j}^{\prime}(k)+B_{i, j+3} f_{j+3, j}^{\prime}(k)+\cdots+B_{i, n} f_{n, j}^{\prime}(k)$,
$z_{i, j}=\sum_{k=1}^{n} B_{i, k} f_{k, j}^{\prime}(k)$.

So $B_{n} F_{n}^{-1}(k)=Z_{n}$ is obtained. Furthermore, from the definition of the matrix Z_{n} in equation (9), the Bell's polynomial matrix in equation (2) and the k-Fibonacci matrix in equation (4), $B_{n}=Z_{n} F_{n}(k)$.

4. Conclusion

This paper discusses the relationship between the Bell's polynomial matrix and the k-Fibonacci matrix. Then, from the relationship between the two matrices, two matrix equations are obtained. The first equation is denoted by Y_{n} resulting from the multiplication of the matrix $F_{n}^{-1}(k) B_{n}$ and the second is denoted by Z_{n} resulting from the matrix product $B_{n} F_{n}^{-1}(k)$. Furthermore, using matrix Y_{n} it is showed that the Bell's polynomial matrix B_{n} can be expressed by $B_{n}=Y_{n} F_{n}^{-1}(k)$ and using matrix Z_{n} shows that the Bell's polynomial matrix B_{n} can be expressed as $B_{n}=F_{n}^{-1}(k) Z_{n}$. For further research, it can be carried out a research on the relationship of Bell's polynomial matrix and k-Tribonacci matrix and the relationship of Bell's polynomial matrix and k-Stirling matrix.

References

[1] M. Abbas and S. Bouroubi, "On New Identities for Bell's Polynomial", Discrete Mathematics, vol. 293, pp. 5-10, March. 2005.
[2] Comtet, "Advanced Combinatorics", Reidel Publishing Company, Dordrecht and Boston, 1974.
[3] S. Falcon, "The k-Fibonacci Matrix and The Pascal Matrix", Central European Journal of Mathematics, vol. 9, pp. 1403-1410, August. 2011.
[4] S. Falcon and A. Plaza, "k-Fibonacci Sequences Modulo m", Chaos Solitons and Fractals, vol. 41, pp. 497-504, Feb. 2009.
[5] K. K. Kataria and P. Vellaisamy, "Correlation Between Adomian and Partial Exponential Bell Polynomials", Discrete Mathematics, vol 10, pp. 168-185, May 2016.
[6] M. Mihoubi, "Bell Polinomiyals and Binomial Type Sequences", Discrete Mathematics, vol 308, pp. 2450-2459, May 2007.
[7] F. Qi, D. W. Niu, D. Lim, and B. N. Guo, "Some Properties and Application of Multivariate Exponential Polynomial", Archives Ouvertes, vol. 8, pp. 1-22, Aug. 2018.
[8] G. P. S. Rathore, A.A. Wani, and K. Sisodiya, "Matrix Representation of Generalized k-Fibonacci Sequence", OSR Journal of Mathematics, vol, 12, pp. 67-72, Jan. 2016.
[9] T. Wahyuni, S. Gemawati and Syamsudhuha, "On Some Identities of k-Fibonacci Sequences Modulo Ring Z_{6} danZ $_{10}$ ", Applied Mathematical Sciences, vol. 12, pp. 441-448, March. 2018.
[10] W. Wang and T. Wang, "Identities via Bell matrix and Fibonacci matrix", Discrete Applied Mathematics, vol. 156, pp. 2793-2803, Feb. 2008.
[11] W. Wang and T. Wang, "Matrices Related to the Bell Polynomials", Linear Algebra and Its Applications, vol. 422, pp.139-154, Nov. 2007.

[^0]: * Corresponding author

