Approximation Theory on Summability of Fourier Series

Sanjay Mukherjee ${ }^{\text {a }}$, A J Khan ${ }^{\text {b }}$
${ }^{a}$ Research Scholor, MATS University, Raipur(C.G.), India
${ }^{b}$ MATS University, Raipur(C.G.), India
${ }^{a}$ Email: sanjaymukherjeeruma@gmail.com
${ }^{b}$ Email: khanaj@matsuniversity.ac.in

Abstract

The results of Chandra to (e,c) means U.K.Shrivastava and S.K.Verma have proved the following theorem

THEOREM : Let $f \in C_{2 \pi} \cap$ Lip $\propto, 0<\propto \leq 1$. Then $\left\|t_{n}^{c}-f\right\|=o\left(n^{-\alpha / 2}\right)$,

Where $t_{n}^{c}(f ; x)$ is nth (e, c) means of fourier series of f at x .

In this paper we obtain the Fourier series by $(\mathrm{N}, \mathrm{p}, \mathrm{q})(\mathrm{E}, 1)$ which is the analogues to the (e, c) means given above .The theorem is as follows

THEOREM: Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be the positive monotonic, non increasing sequence of real numbers be summable $(N, p, q)(E, 1)$ to $f(x)$ at the point $t=x$ is
$t_{N}^{p, q, E}-f(x)=o(1)$

Keywords: Fourier series; Borel means; Lebesgue series.

[^0]
1. Introduction

Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be the sequences of constants, real or complex, such that

$$
\begin{gather*}
P_{n}=p_{1}+p_{2}+p_{3}+\cdots p_{n}=\sum_{r=0}^{n} p_{r} \rightarrow \infty \text {, as } n \rightarrow \infty, \\
Q_{n}=q_{1}+q_{2}+q_{3}+\cdots q_{n}=\sum_{r=0}^{n} q_{r} \rightarrow \infty \text {, as } n \rightarrow \infty, \tag{1.1}\\
R_{n}=p_{0} q_{n}+p_{1} q_{n-1}+p_{3} q_{n-2}+\cdots p_{n} q_{0}=\sum_{r=0}^{n} p_{r} q_{n-r} \rightarrow \infty, \text { as } n \rightarrow \infty
\end{gather*}
$$

Given two sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ convolution $(p * q)$ is defined as

$$
\begin{equation*}
R_{n}=(p \neq q)_{n}=\sum_{r=0}^{n} p_{n-r} q_{r} \tag{1.2}
\end{equation*}
$$

Let $\sum_{n=0}^{\infty} u_{n}$ be an infinite series with the sequence of its nth partial sums $\left\{s_{n}\right\}$.

$$
\begin{equation*}
\text { We write } t_{n}^{p, q}=\frac{1}{R_{n}} \sum_{r=0}^{n} p_{n-r} q_{r} \tag{1.3}
\end{equation*}
$$

If $R_{n} \neq 0$, for all n , the generalized Norlund transform of the sequence $\left\{s_{n}\right\}$ is the sequence $\left\{t_{n}^{p . q}\right\}$.

If $t_{n}^{p, q} \rightarrow S$, as $n \rightarrow \infty$, then the series $\sum_{n=0}^{\infty} u_{n}$ or sequence $\left\{s_{n}\right\}$ is summable to S by

$$
\begin{equation*}
S_{n} \rightarrow S(N, p, q) \tag{1.4}
\end{equation*}
$$

The necessary and sufficient conditions for ($\mathrm{N}, \mathrm{p}, \mathrm{q}$) method to be regular are

$$
\begin{equation*}
\sum_{r=0}^{n}\left|p_{n-r} q_{r}\right|=o\left(\left|R_{n}\right|\right) \tag{1.5}
\end{equation*}
$$

And $p_{n-r}=o\left(\left|R_{n}\right|\right)$, as $n \rightarrow \infty$ for every fixed $k \geq 0$, for which $q_{r} \neq 0$

$$
\begin{equation*}
E_{n}^{1}=\frac{1}{2^{n}} \sum_{r=0}^{n}\binom{n}{r} s_{r} \tag{1.6}
\end{equation*}
$$

If $E_{n}^{1} \rightarrow s$, as $n \rightarrow \infty$, then the series $\sum_{n=0}^{\infty} u_{n}$ is said to be (E,1) summable to s (Hardy [1]) :
$t_{n}^{p, q, E}=\frac{1}{R_{n}} \sum_{r-0}^{n} p_{n-r} q_{r} E_{r}^{1}$

$$
\begin{equation*}
=\frac{1}{R_{n}} \sum_{r=0}^{n} p_{n-r} q_{r} \frac{1}{2^{k}} \sum_{r=0}^{n}\binom{k}{r} s_{r} \tag{1.7}
\end{equation*}
$$

If $T_{n}^{p, q, E} \rightarrow \infty$, as $n \rightarrow \infty$, then we say that the series $\sum_{n=0}^{\infty} u_{n}$ or the sequence $\left\{s_{n}\right\}$ is summable to S by
(N,p,q)(E,1) summability method.

2. Structure

2. Degree of approximation by borel means and (E, Q) means were obtained by Chandra [4] and [5] respectively .Extending the results of Chandra to (e,c) means U.K.Shrivastava and S.K.Verma[9] have proved the following theorem

THEOREM : Let $f \in C_{2 \pi} \cap \operatorname{Lip} \propto, 0<\propto \leq 1$. Then
$\left\|t_{n}^{c}-f\right\|=o\left(n^{-\alpha / 2}\right)$,

Where $t_{n}^{c}(f ; x)$ is nth (e,c) means of fourier series of f at x .

Our theorem fourier series by $(\mathrm{N}, \mathrm{p}, \mathrm{q})(\mathrm{E}, 1)$ is the analogues to the (e, c) means theorem, which is as follows

THEOREM: Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be the positive monotonic , non increasing sequence of real numbers be summable $(N, p, q)(E, 1)$ to $f(x)$ at the point $t=x$ is
$t_{N}^{p, q, E}-f(x)=o(1)$

Proof of the above theorem required some lemmas

3. Lemmas

Lemma 3.1- For $0 \leq t \leq \frac{1}{n}\left|K_{n}(t)\right|=o(n)$

Lemma 3.2- If $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are non negative and non increasing, then for $0 \leq a \leq b<\infty, 0 \leq t \leq \pi$, and any n we have $\frac{1}{2 \pi R_{n}}\left|\sum_{r=a}^{b} p_{n-r} q_{r} \frac{\cos ^{r}(t / 2) \sin (r+1)(t / 2)}{\sin (t / 2)}\right|=o\left(\frac{R_{k}}{t R_{n}}\right)$

4. Proof of Theorem

Let $f(t)$ be a periodic function with period 2π and integrable in the same sense of Lebesgue over the interval $(-\pi, \pi)$

Let its Fourier series be given by

$$
\begin{equation*}
f(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \tag{4.1}
\end{equation*}
$$

Following Zygmund [3] , the nth sum $s_{n}(x)$ of the series at $\mathrm{t}=\mathrm{x}$ is given by
$s_{n}(x)=f(x)+\frac{1}{2 \pi} \int_{0}^{\pi} \emptyset_{x}(t) \frac{\sin (n+1) t}{\sin (t / 2)} d t$

So the $(E, 1)$ mean of the series at $t=x$ is given by

$$
\begin{gathered}
E_{n}^{1}(x)=\frac{1}{2^{n}} \sum_{r=0}^{n}\binom{n}{r} s_{r}(x) \\
=f(x)+\frac{1}{2^{n+1} \pi} \int_{r=0}^{\pi} \frac{\emptyset_{x}(t)}{\sin (t / 2)}\left\{\sum_{r=0}^{n}\binom{n}{r} \sin \left(r+\frac{1}{2}\right) t\right\} d t \\
=f(x)+\frac{1}{2^{n+1} \pi} \int_{0}^{\pi} \frac{\emptyset_{x}(t)}{\sin (t / 2)} \operatorname{Im}\left\{e^{i t / 2}(1+\cos t+i \sin t)^{n}\right\} d t \\
=f(x)+\frac{1}{2^{n+1} \pi} \int_{0}^{\pi} \frac{\emptyset_{x}(t)}{2^{n+1} \pi} \int_{0}^{\pi} \frac{\emptyset_{x}(t)}{\sin (t / 2)} \operatorname{Im}\left\{e^{i t / 2} 2^{n} \cos ^{n}\left(\frac{t}{2}\right)\left(\cos \frac{t}{2}+i \sin \frac{t}{2}\right)^{n}\right\} d t \\
=f(x)+\frac{1}{2^{n+1} \pi} \int_{0}^{\pi} \frac{\emptyset_{x}(t)}{\sin (t / 2)} \operatorname{Im}\left\{e^{i t / 2} 2^{n}\right\} d t \\
\left.=\cos ^{n}\left(\frac{t}{2}\right)\left(\cos \frac{n t}{2}+i \sin \frac{n t}{2}\right)\right\} d t \\
=f(x)+\frac{1}{2 \pi} \int_{0}^{\pi} \emptyset_{x}(t) \frac{\cos ^{n}(t / 2) \sin (n+1)(t / 2)}{\sin \left(\frac{t}{2}\right)} d t
\end{gathered}
$$

Therefore

$$
t_{n}^{p, q, E}(x)-f(x)=\left[\int_{0}^{1 / n}+\int_{1 / n}^{\delta}+\int_{\delta}^{\pi}\right] K_{n}(t) \emptyset_{x}(t) d t
$$

$$
\begin{equation*}
=I_{1}+I_{2}+I_{3} \text { (say) } \tag{4.4}
\end{equation*}
$$

We have

$$
\left|I_{1}\right| \leq \int_{0}^{1 / n}\left|K_{n}(t)\right|\left|\emptyset_{x}(t)\right| d t
$$

$=O(n) \int_{0}^{1 / n}\left|\emptyset_{x}(t)\right| d t(u \operatorname{sing}$ Lemma 3.1)

$$
=o\left(\frac{1}{\alpha(n)}\right)
$$

$$
\begin{equation*}
=o(1) \text { as } n \rightarrow \infty \tag{4.6}
\end{equation*}
$$

Now

$$
\begin{gather*}
\left.\left|I_{2}\right| \leq \int_{1 / n}^{\delta}\left|K_{n}(t)\right|\left|\emptyset_{x}(x)\right| d t \text { (where } 0<\delta<1\right) \\
=\int_{1 / n}^{\delta} o\left(\frac{R(1 / t)}{t R(n)}\right)\left|\emptyset_{x}(t)\right| d t(\text { using Lemma 3.2) } \\
=o\left(\frac{1}{R(n)}\right) \int_{1 / n}^{\delta}\left(\frac{R(1 / t)}{t}\right)\left|\emptyset_{x}(t)\right| d t \\
=o\left(\frac{1}{R(n)}\right)\left[\left\{\frac{R(1 / t)}{t} \emptyset_{x}(t)\right\}_{1 / n}^{\delta}-\int_{1 / n}^{\delta} d\left(\frac{R(1 / t)}{t}\right) \emptyset_{x}(t)\right] \\
=o\left(\frac{1}{R(n)}\right)+o\left(\frac{1}{\alpha(n)}\right)+o\left(\frac{1}{R(n)}\right)\left[\int_{1 / n}^{\delta} \emptyset_{x}(t)\left\{d\left(\frac{R(1 / t) \alpha(1 / t)}{t \alpha(1 / t)}\right)\right\}\right. \\
=o\left(\frac{1}{R(n)}\right)+o\left(\frac{1}{\alpha(n)}\right)+o(1) \\
=o(1), a s n \rightarrow \infty \tag{4.7}
\end{gather*}
$$

Now

$$
I_{3}=\int_{\delta}^{\pi}\left|K_{n}(t)\right|\left|\emptyset_{x}(t)\right| d t
$$

By Riemann-Lebesgue theorem and regularity of the method of summability we have

$$
\begin{equation*}
I_{3}=o(1), \text { as } n \rightarrow \infty \tag{4.8}
\end{equation*}
$$

Combining (4.6),(4.7) and (4.8) we get
$t_{N}^{p, q, E}-f(x)=o(1)$

This completes the proof of the theorem.

5. Conclusion

We conclude that the above theorem which is proved in (e,c) means can be proved by ($\mathrm{N}, \mathrm{p}, \mathrm{q}$) $(\mathrm{E}, 1)$ means.

Acknowledgements

History of all great works into witness that no great work was ever done without either active or passive support of a person 'surrounding and one's close quarters. Thus is it not hard to conclude how active assistance from senior could positively impact the execution of the project. I am highly thankful to our faculty head A.J. Khan Sir for his active guidance throughout the completion of the paper. Last but not the least, I would also want to extend my appreciation to those who could not be mentioned here but have well played their role in inspire me behind the certain.

References

[1] G.H. Hardy, Divergent series, Oxford University Press, Oxford,UK,1 ${ }^{\text {st }}$ edition ,1949.
[2] D. Borwein , On product of sequences ,Journal of the London Mathematical Society, vol.33pp.352-357, (1958).
[3] A. Zygmund , Trigonometric Series. Vol. I Cambridge University Press, Cambridge, UK, $2^{\text {nd }}$ edition, 1959.
[4] P. Chandra. On the degree of approximation of function belonging to Lipschitz Class. Labdev. Jour. Science and Technology, 13A (1975), 181-183.
[5] P. Chandra. On the degree of approximation of continuous functions Commun. Fac. Sci. Univ. Ankara Ser A, 30(1981),7-16.
[6] K.Ikeno, Lebesgue constant for a family of Summability method, Tohoku Math. J.,17(1965),250-265. [7] B.Kuttner, C.T.Rjajagopal, and M.S.Rangachari, Tauberian convergence theorems for summability methods of the Karamata family, J.Indian Math. Soc. 44(1980),23-38.
[8] A.Meir, Tauberian constants for a family of transformations, Annals of Math. 78(1963), 594-599
[9] U.K.Shrivastava and S.L.Varma, On the degree of approximation of function belonging to Lipschitz Class by (e,c) means, Tamkang Journal of Maths, 26,no.3(1965),97-101.

[^0]: * Corresponding author.

