American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers

http://asrjetsjournal.org

Approximation Theory on Summability of Fourier Series

Sanjay Mukherjee^a*, A J Khan^b

^aResearch Scholor, MATS University, Raipur(C.G.), India ^bMATS University, Raipur(C.G.), India ^aEmail: sanjaymukherjeeruma@gmail.com ^bEmail: khanaj@matsuniversity.ac.in

Abstract

The results of Chandra to (e,c) means U.K.Shrivastava and S.K.Verma have proved the following theorem

THEOREM : Let $f \in C_{2\pi} \cap Lip \propto 0, 0 < \alpha \le 1$. Then

 $\|t_n^c - f\| = o(n^{-\alpha/2}),$

Where $t_n^c(f; x)$ is nth (e, c) means of fourier series of f at x.

In this paper we obtain the Fourier series by (N,p,q)(E,1) which is the analogues to the (e, c) means given above .The theorem is as follows

THEOREM: Let $\{p_n\}$ and $\{q_n\}$ be the positive monotonic, non increasing sequence of real numbers be summable (N,p,q)(E,1) to f(x) at the point t=x is

 $t_N^{p,q,E} - f(x) = o(1)$

Keywords: Fourier series; Borel means; Lebesgue series.

^{*} Corresponding author.

1. Introduction

Let $\{p_n\}$ and $\{q_n\}$ be the sequences of constants, real or complex, such that

$$P_n = p_1 + p_2 + p_3 + \cdots p_n = \sum_{r=0}^n p_r \to \infty, \text{ as } n \to \infty,$$

$$Q_n = q_1 + q_2 + q_3 + \dots + q_n = \sum_{r=0}^n q_r \to \infty, \text{ as } n \to \infty,$$

$$(1.1)$$

$$R_{n} = p_{0}q_{n} + p_{1}q_{n-1} + p_{3}q_{n-2} + \dots + p_{n}q_{0} = \sum_{r=0}^{n} p_{r}q_{n-r} \to \infty, \text{ as } n \to \infty$$

Given two sequences $\{p_n\}$ and $\{q_n\}$ convolution (p * q) is defined as

$$R_n = (p \neq q)_n = \sum_{r=0}^n p_{n-r} q_r$$
(1.2)

Let $\sum_{n=0}^{\infty} u_n$ be an infinite series with the sequence of its nth partial sums{ s_n }.

We write
$$t_n^{p,q} = \frac{1}{R_n} \sum_{r=0}^n p_{n-r} q_r$$
 (1.3)

If $R_n \neq 0$, for all n, the generalized Norlund transform of the sequence $\{s_n\}$ is the sequence $\{t_n^{p,q}\}$.

If $t_n^{p,q} \to S$, as $n \to \infty$, then the series $\sum_{n=0}^{\infty} u_n$ or sequence $\{s_n\}$ is summable to S by

$$S_n \to S(N, p, q) \tag{1.4}$$

The necessary and sufficient conditions for (N,p,q) method to be regular are

$$\sum_{r=0}^{n} |p_{n-r}q_r| = o(|R_n|) \tag{1.5}$$

And $p_{n-r} = o(|R_n|)$, as $n \to \infty$ for every fixed $k \ge 0$, for which $q_r \ne 0$

$$E_n^1 = \frac{1}{2^n} \sum_{r=0}^n {n \choose r} s_r \tag{1.6}$$

If $E_n^1 \to s$, as $n \to \infty$, then the series $\sum_{n=0}^{\infty} u_n$ is said to be (E,1) summable to s (Hardy [1]):

$$t_n^{p,q,E} = \frac{1}{R_n} \sum_{r=0}^n p_{n-r} q_r E_r^1$$

$$= \frac{1}{R_n} \sum_{r=0}^n p_{n-r} q_r \frac{1}{2^k} \sum_{r=0}^n {k \choose r} s_r$$
(1.7)

If $T_n^{p,q,E} \to \infty$, as $n \to \infty$, then we say that the series $\sum_{n=0}^{\infty} u_n$ or the sequence $\{s_n\}$ is summable to S by

(N,p,q)(E,1) summability method.

2. Structure

2. Degree of approximation by borel means and (E, Q) means were obtained by Chandra [4] and [5] respectively .Extending the results of Chandra to (e,c) means U.K.Shrivastava and S.K.Verma[9] have proved the following theorem

THEOREM : Let $f \in C_{2\pi} \cap Lip \propto 0, 0 < \alpha \le 1$. Then

$$||t_n^c - f|| = o(n^{-\alpha/2}),$$

Where $t_n^c(f; x)$ is nth (e,c) means of fourier series of f at x. (2.1)

Our theorem fourier series by (N,p,q)(E,1) is the analogues to the (e,c) means theorem, which is as follows

THEOREM: Let $\{p_n\}$ and $\{q_n\}$ be the positive monotonic ,non increasing sequence of real numbers be summable (N,p,q)(E,1) to f(x) at the point t=x is

$$t_N^{p,q,E} - f(x) = o(1)$$

Proof of the above theorem required some lemmas

3. Lemmas

Lemma 3.1- For $0 \le t \le \frac{1}{n} |K_n(t)| = o(n)$

Lemma 3.2- If $\{p_n\}$ and $\{q_n\}$ are non negative and non increasing, then for $0 \le a \le b < \infty, 0 \le t \le \pi$, and any n we have $\frac{1}{2\pi R_n} \left| \sum_{r=a}^b p_{n-r} q_r \frac{\cos^r(t/2) \sin(r+1)(t/2)}{\sin(t/2)} \right| = o\left(\frac{R_k}{tR_n}\right)$

4. Proof of Theorem

Let f(t) be a periodic function with period 2π and integrable in the same sense of Lebesgue over the interval $(-\pi, \pi)$

Let its Fourier series be given by

$$f(t) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n cosnt + b_n sinnt)$$

$$\tag{4.1}$$

Following Zygmund [3], the nth sum $s_n(x)$ of the series at t=x is given by

$$s_n(x) = f(x) + \frac{1}{2\pi} \int_0^{\pi} \phi_x(t) \frac{\sin(n+1)t}{\sin(t/2)} dt$$
(4.2)

So the (E,1) mean of the series at t=x is given by

$$E_n^1(x) = \frac{1}{2^n} \sum_{r=0}^n \binom{n}{r} s_r(x)$$

= $f(x) + \frac{1}{2^{n+1}\pi} \int_{r=0}^{\pi} \frac{\phi_x(t)}{\sin(t/2)} \left\{ \sum_{r=0}^n \binom{n}{r} \sin\left(r + \frac{1}{2}\right) t \right\} dt$
= $f(x) + \frac{1}{2^{n+1}\pi} \int_0^{\pi} \frac{\phi_x(t)}{\sin(t/2)} Im \left\{ e^{it/2} (1 + e^{it})^n \right\} dt$ (4.3)

$$= f(x) + \frac{1}{2^{n+1}\pi} \int_0^{\pi} \frac{\phi_x(t)}{\sin(t/2)} Im \left\{ e^{it/2} (1 + \cos t + i\sin t)^n \right\} dt$$

$$= f(x) + \frac{1}{2^{n+1}\pi} \int_0^{\pi} \frac{\phi_x(t)}{\sin(t/2)} Im \left\{ e^{it/2} 2^n \cos^n \left(\frac{t}{2}\right) \left(\cos \frac{t}{2} + i\sin \frac{t}{2}\right)^n \right\} dt$$

$$= f(x) + \frac{1}{2^{n+1}\pi} \int_0^{\pi} \frac{\phi_x(t)}{\sin(t/2)} Im \left\{ e^{it/2} 2^n \cos^n \left(\frac{t}{2}\right) \left(\cos \frac{nt}{2} + i\sin \frac{nt}{2}\right) \right\} dt$$

$$= f(x) + \frac{1}{2\pi} \int_0^{\pi} \phi_x(t) \frac{\cos^n(t/2)\sin(n+1)(t/2)}{\sin(\frac{t}{2})} dt$$

Therefore

$$t_n^{p,q,E}(x) - f(x) = \begin{bmatrix} 1/n & \delta & \pi \\ \int & + \int & + \int \\ 0 & 1/n & \delta \end{bmatrix} K_n(t) \phi_x(t) dt$$

(4.4)

 $= I_1 + I_2 + I_3$ (say)

We have

$$|I_1| \le \int_0^{1/n} |K_n(t)| |\phi_x(t)| dt$$

= $O(n) \int_0^{1/n} |\phi_x(t)| dt$ (using Lemma 3.1)

(4.5)

$$= o\left(\frac{1}{\alpha(n)}\right)$$

 $= o(1) as n \rightarrow \infty$

Now

$$\begin{split} |I_2| &\leq \int_{1/n}^{\delta} |K_n(t)| \, |\phi_x(x)| \, dt \text{ (where } 0 < \delta < 1) \\ &= \int_{1/n}^{\delta} o\left(\frac{R(1/t)}{tR(n)}\right) |\phi_x(t)| \, dt \text{ (using Lemma 3.2)} \\ &= o\left(\frac{1}{R(n)}\right) \int_{1/n}^{\delta} \left(\frac{R(1/t)}{t}\right) |\phi_x(t)| \, dt \\ &= o\left(\frac{1}{R(n)}\right) \left[\left\{\frac{R(1/t)}{t} \phi_x(t)\right\}_{1/n}^{\delta} - \int_{1/n}^{\delta} d\left(\frac{R(1/t)}{t}\right) \phi_x(t) \right] \\ &= o\left(\frac{1}{R(n)}\right) + o\left(\frac{1}{\alpha(n)}\right) + o\left(\frac{1}{R(n)}\right) \left[\int_{1/n}^{\delta} \phi_x(t) \left\{ d\left(\frac{R(1/t)\alpha(1/t)}{t\alpha(1/t)}\right) \right\} \right] \\ &= o\left(\frac{1}{R(n)}\right) + o\left(\frac{1}{R(n)}\right) + o\left(\frac{1}{\alpha(n)}\right) + o\left(\frac{1}{\alpha(n)}\right) + o(1) \end{split}$$

$$= o(1), as n \rightarrow \infty$$

(4.7)

Now

$$I_3 = \int_{\delta}^{\pi} |K_n(t)| |\phi_x(t)| \, dt$$

By Riemann-Lebesgue theorem and regularity of the method of summability we have

$$I_3 = o(1), as \ n \to \infty \tag{4.8}$$

Combining (4.6),(4.7) and (4.8) we get

$$t_N^{p,q,E} - f(x) = o(1)$$

This completes the proof of the theorem.

(4.6)

5. Conclusion

We conclude that the above theorem which is proved in (e,c) means can be proved by (N,p,q)(E,1) means.

Acknowledgements

History of all great works into witness that no great work was ever done without either active or passive support of a person 'surrounding and one's close quarters. Thus is it not hard to conclude how active assistance from senior could positively impact the execution of the project. I am highly thankful to our faculty head A.J. Khan Sir for his active guidance throughout the completion of the paper. Last but not the least, I would also want to extend my appreciation to those who could not be mentioned here but have well played their role in inspire me behind the certain.

References

- [1] G.H. Hardy, Divergent series, Oxford University Press, Oxford, UK, 1st edition , 1949.
- [2] D. Borwein, On product of sequences ,Journal of the London Mathematical Society, vol.33pp.352-357, (1958).
- [3] A. Zygmund , Trigonometric Series. Vol. I Cambridge University Press, Cambridge, UK, 2nd edition, 1959.
- [4] P. Chandra. On the degree of approximation of function belonging to Lipschitz Class. Labdev. Jour. Science and Technology, 13A (1975), 181-183.
- [5] P. Chandra. On the degree of approximation of continuous functions Commun. Fac. Sci. Univ. Ankara Ser A, 30(1981),7-16.
- [6] K.Ikeno, Lebesgue constant for a family of Summability method, Tohoku Math. J.,17(1965),250-265.
 [7] B.Kuttner, C.T.Rjajagopal, and M.S.Rangachari, Tauberian convergence theorems for summability methods of the Karamata family, J.Indian Math. Soc. 44(1980),23-38.
- [8] A.Meir, Tauberian constants for a family of transformations, Annals of Math. 78(1963), 594-599
- [9] U.K.Shrivastava and S.L.Varma, On the degree of approximation of function belonging to Lipschitz Class by (e,c) means, Tamkang Journal of Maths, 26,no.3(1965),97-101.