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Abstract 

The results of Chandra to (e,c) means U.K.Shrivastava and S.K.Verma have proved the following theorem 

THEOREM : Let 𝑓𝑓 ∈ 𝐶𝐶2𝜋𝜋 ∩ 𝐿𝐿𝐿𝐿𝐿𝐿 ∝ ,0 <∝≤ 1. Then  

‖𝑡𝑡𝑛𝑛𝑐𝑐 − 𝑓𝑓‖ = 𝑜𝑜�𝑛𝑛−∝ 2� �,  

Where 𝑡𝑡𝑛𝑛𝑐𝑐(𝑓𝑓; 𝑥𝑥) is nth (e, c) means of fourier series of f at x.  

In this paper we obtain the Fourier series by (N,p,q)(E,1) which is the analogues  to  the (e , c) means given 

above .The theorem is as follows  

THEOREM: Let {𝐿𝐿𝑛𝑛}  and {𝑞𝑞𝑛𝑛}  be the positive monotonic, non increasing sequence of real numbers be 

summable (N,p,q)(E,1) to f(x) at the point t=x is  

𝑡𝑡𝑁𝑁
𝑝𝑝,𝑞𝑞,𝐸𝐸 − 𝑓𝑓(𝑥𝑥) = 𝑜𝑜(1)                    
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1. Introduction 

Let {𝐿𝐿𝑛𝑛} and {𝑞𝑞𝑛𝑛} be the sequences of constants, real or complex, such that 

𝑃𝑃𝑛𝑛 = 𝐿𝐿1 + 𝐿𝐿2 + 𝐿𝐿3 + ⋯𝐿𝐿𝑛𝑛 = �𝐿𝐿𝑟𝑟 → ∞, 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞,
𝑛𝑛

𝑟𝑟=0

 

𝑄𝑄𝑛𝑛 = 𝑞𝑞1 + 𝑞𝑞2 + 𝑞𝑞3 + ⋯𝑞𝑞𝑛𝑛 = ∑ 𝑞𝑞𝑟𝑟 → ∞, 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞𝑛𝑛
𝑟𝑟=0 ,                                                          (1.1) 

𝑅𝑅𝑛𝑛 = 𝐿𝐿0𝑞𝑞𝑛𝑛 + 𝐿𝐿1𝑞𝑞𝑛𝑛−1 + 𝐿𝐿3𝑞𝑞𝑛𝑛−2 + ⋯𝐿𝐿𝑛𝑛𝑞𝑞0 = �𝐿𝐿𝑟𝑟𝑞𝑞𝑛𝑛−𝑟𝑟 → ∞, 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞
𝑛𝑛

𝑟𝑟=0

 

Given two sequences {𝐿𝐿𝑛𝑛} and {𝑞𝑞𝑛𝑛} convolution (𝐿𝐿 ∗ 𝑞𝑞) is defined as 

𝑅𝑅𝑛𝑛 = (𝐿𝐿 ≠ 𝑞𝑞)𝑛𝑛 = ∑ 𝐿𝐿𝑛𝑛−𝑟𝑟𝑛𝑛
𝑟𝑟=0 𝑞𝑞𝑟𝑟                                                                                                       (1.2) 

Let ∑ 𝑢𝑢𝑛𝑛∞
𝑛𝑛=0    be an infinite series with the sequence of its nth partial sums{𝑎𝑎𝑛𝑛}. 

We write 𝑡𝑡𝑛𝑛
𝑝𝑝,𝑞𝑞 = 1

𝑅𝑅𝑛𝑛
∑ 𝐿𝐿𝑛𝑛−𝑟𝑟𝑞𝑞𝑟𝑟𝑛𝑛
𝑟𝑟=0   (1.3) 

If 𝑅𝑅𝑛𝑛 ≠ 0, for all n, the generalized Norlund transform of the sequence {𝑎𝑎𝑛𝑛} is the sequence�𝑡𝑡𝑛𝑛
𝑝𝑝.𝑞𝑞�. 

If 𝑡𝑡𝑛𝑛
𝑝𝑝,𝑞𝑞 → 𝑆𝑆, 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞, then the series ∑ 𝑢𝑢𝑛𝑛∞

𝑛𝑛=0  or sequence {𝑎𝑎𝑛𝑛} is summable to S by  

𝑆𝑆𝑛𝑛 → 𝑆𝑆(𝑁𝑁, 𝐿𝐿, 𝑞𝑞)                              (1.4) 

The necessary and sufficient conditions for (N,p,q) method to be regular are  

∑ |𝐿𝐿𝑛𝑛−𝑟𝑟𝑞𝑞𝑟𝑟| = 𝑜𝑜(|𝑅𝑅𝑛𝑛|)𝑛𝑛
𝑟𝑟=0     (1.5) 

And 𝐿𝐿𝑛𝑛−𝑟𝑟 = 𝑜𝑜(|𝑅𝑅𝑛𝑛|), as 𝑛𝑛 → ∞ for every fixed 𝑘𝑘 ≥ 0, for which 𝑞𝑞𝑟𝑟 ≠ 0 

𝐸𝐸𝑛𝑛1 = 1
2𝑛𝑛
∑ �𝑛𝑛𝑟𝑟�
𝑛𝑛
𝑟𝑟=0 𝑎𝑎𝑟𝑟      (1.6) 

If 𝐸𝐸𝑛𝑛1 → 𝑎𝑎, 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞ , then the series ∑ 𝑢𝑢𝑛𝑛∞
𝑛𝑛=0  is said to be (E,1) summable to s (Hardy [1] ) : 

𝑡𝑡𝑛𝑛
𝑝𝑝,𝑞𝑞,𝐸𝐸 = 1

𝑅𝑅𝑛𝑛
∑ 𝐿𝐿𝑛𝑛−𝑟𝑟𝑞𝑞𝑟𝑟𝐸𝐸𝑟𝑟1𝑛𝑛
𝑟𝑟−0   

= 1
𝑅𝑅𝑛𝑛
∑ 𝐿𝐿𝑛𝑛−𝑟𝑟𝑞𝑞𝑟𝑟𝑛𝑛
𝑟𝑟=0

1
2𝑘𝑘
∑ �𝑘𝑘𝑟𝑟�𝑎𝑎𝑟𝑟
𝑛𝑛
𝑟𝑟=0              (1.7) 

If 𝑇𝑇𝑛𝑛
𝑝𝑝,𝑞𝑞,𝐸𝐸 → ∞,𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞ , then we say that the series ∑ 𝑢𝑢𝑛𝑛∞

𝑛𝑛=0  or the sequence {𝑎𝑎𝑛𝑛}  is summable to S by 
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(N,p,q)(E,1) summability method. 

2. Structure  

2. Degree of approximation by borel means and (E, Q) means were obtained by Chandra [4] and [5] respectively 

.Extending the results of Chandra to (e,c) means U.K.Shrivastava and S.K.Verma[9] have proved the following 

theorem 

THEOREM : Let 𝑓𝑓 ∈ 𝐶𝐶2𝜋𝜋 ∩ 𝐿𝐿𝐿𝐿𝐿𝐿 ∝ ,0 <∝≤ 1. Then  

‖𝑡𝑡𝑛𝑛𝑐𝑐 − 𝑓𝑓‖ = 𝑜𝑜�𝑛𝑛−∝ 2� �,  

Where 𝑡𝑡𝑛𝑛𝑐𝑐(𝑓𝑓; 𝑥𝑥) is nth (e,c) means of fourier series of f at x. (2.1) 

Our theorem fourier series by (N,p,q)(E,1) is the analogues to  the (e,c) means theorem, which is as follows 

THEOREM: Let {𝐿𝐿𝑛𝑛}  and {𝑞𝑞𝑛𝑛}  be the positive monotonic ,non increasing sequence of real numbers be 

summable (N,p,q)(E,1) to f(x) at the point t=x is  

𝑡𝑡𝑁𝑁
𝑝𝑝,𝑞𝑞,𝐸𝐸 − 𝑓𝑓(𝑥𝑥) = 𝑜𝑜(1)                    

Proof of the above theorem required some lemmas 

3. Lemmas 

Lemma  3.1- For 0 ≤ 𝑡𝑡 ≤ 1
𝑛𝑛
   |𝐾𝐾𝑛𝑛(𝑡𝑡)| = 𝑜𝑜(𝑛𝑛) 

Lemma 3.2- If  {𝐿𝐿𝑛𝑛} and {𝑞𝑞𝑛𝑛} are non negative and non increasing, then for 0 ≤ 𝑎𝑎 ≤ 𝑏𝑏 < ∞, 0 ≤ 𝑡𝑡 ≤ 𝜋𝜋, and any 

n we have 1
2𝜋𝜋𝑅𝑅𝑛𝑛

�∑ 𝐿𝐿𝑛𝑛−𝑟𝑟𝑞𝑞𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟�𝑡𝑡 2� �𝑐𝑐𝑠𝑠𝑛𝑛(𝑟𝑟+1)�𝑡𝑡 2� �

𝑐𝑐𝑠𝑠𝑛𝑛�𝑡𝑡 2� �
𝑏𝑏
𝑟𝑟=𝑎𝑎 � = 𝑜𝑜 � 𝑅𝑅𝑘𝑘

𝑡𝑡𝑅𝑅𝑛𝑛
� 

4. Proof of Theorem  

Let f(t) be a periodic function with period 2𝜋𝜋 and integrable in the same sense of Lebesgue over the interval 

�–𝜋𝜋,𝜋𝜋� 

Let its Fourier series be given by  

𝑓𝑓(𝑡𝑡)~ 1
2
𝑎𝑎0 + ∑ (𝑎𝑎𝑛𝑛𝑐𝑐𝑜𝑜𝑎𝑎𝑛𝑛𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑎𝑎𝐿𝐿𝑛𝑛𝑛𝑛𝑡𝑡)∞

𝑛𝑛=1   (4.1) 

Following Zygmund [3] , the nth sum 𝑎𝑎𝑛𝑛(𝑥𝑥) of the series  at t=x is given by  
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𝑎𝑎𝑛𝑛(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 1
2𝜋𝜋 ∫ ∅𝑥𝑥(𝑡𝑡)𝜋𝜋

0
𝑐𝑐𝑠𝑠𝑛𝑛(𝑛𝑛+1)𝑡𝑡
𝑐𝑐𝑠𝑠𝑛𝑛�𝑡𝑡 2� �

𝑑𝑑𝑡𝑡  (4.2) 

So the (E,1) mean of the series at t=x is given by 

𝐸𝐸𝑛𝑛1(𝑥𝑥) =
1

2𝑛𝑛
��

𝑛𝑛
𝑟𝑟
�

𝑛𝑛

𝑟𝑟=0

𝑎𝑎𝑟𝑟(𝑥𝑥) 

= 𝑓𝑓(𝑥𝑥) +
1

2𝑛𝑛+1𝜋𝜋
�

∅𝑥𝑥(𝑡𝑡)
𝑎𝑎𝐿𝐿𝑛𝑛�𝑡𝑡 2� �

𝜋𝜋

𝑟𝑟=0
���

𝑛𝑛
𝑟𝑟
�

𝑛𝑛

𝑟𝑟=0

𝑎𝑎𝐿𝐿𝑛𝑛 �𝑟𝑟 +
1
2
� 𝑡𝑡� 𝑑𝑑𝑡𝑡 

= 𝑓𝑓(𝑥𝑥) +
1

2𝑛𝑛+1𝜋𝜋
�

∅𝑥𝑥(𝑡𝑡)
𝑎𝑎𝐿𝐿𝑛𝑛(𝑡𝑡/2) 𝐼𝐼𝐼𝐼

𝜋𝜋

0

�𝑒𝑒𝑠𝑠𝑡𝑡/2(1 + 𝑒𝑒𝑠𝑠𝑡𝑡)𝑛𝑛�𝑑𝑑𝑡𝑡 

= 𝑓𝑓(𝑥𝑥) + 1
2𝑛𝑛+1𝜋𝜋 ∫

∅𝑥𝑥(𝑡𝑡)
𝑐𝑐𝑠𝑠𝑛𝑛(𝑡𝑡/2)

𝐼𝐼𝐼𝐼𝜋𝜋
0 �𝑒𝑒𝑠𝑠𝑡𝑡/2(1 + 𝑐𝑐𝑜𝑜𝑎𝑎𝑡𝑡 + 𝐿𝐿𝑎𝑎𝐿𝐿𝑛𝑛𝑡𝑡)𝑛𝑛�𝑑𝑑𝑡𝑡          (4.3) 

= 𝑓𝑓(𝑥𝑥) +
1

2𝑛𝑛+1𝜋𝜋
�

∅𝑥𝑥(𝑡𝑡)
𝑎𝑎𝐿𝐿𝑛𝑛(𝑡𝑡/2) 𝐼𝐼𝐼𝐼

𝜋𝜋

0

�𝑒𝑒𝑠𝑠𝑡𝑡/22𝑛𝑛𝑐𝑐𝑜𝑜𝑎𝑎𝑛𝑛 �
𝑡𝑡
2
� �𝑐𝑐𝑜𝑜𝑎𝑎

𝑡𝑡
2

+ 𝐿𝐿𝑎𝑎𝐿𝐿𝑛𝑛
𝑡𝑡
2
�
𝑛𝑛
� 𝑑𝑑𝑡𝑡 

= 𝑓𝑓(𝑥𝑥) +
1

2𝑛𝑛+1𝜋𝜋
�

∅𝑥𝑥(𝑡𝑡)
𝑎𝑎𝐿𝐿𝑛𝑛(𝑡𝑡/2) 𝐼𝐼𝐼𝐼

𝜋𝜋

0

�𝑒𝑒𝑠𝑠𝑡𝑡/22𝑛𝑛𝑐𝑐𝑜𝑜𝑎𝑎𝑛𝑛 �
𝑡𝑡
2
� �𝑐𝑐𝑜𝑜𝑎𝑎

𝑛𝑛𝑡𝑡
2

+ 𝐿𝐿𝑎𝑎𝐿𝐿𝑛𝑛
𝑛𝑛𝑡𝑡
2
�� 𝑑𝑑𝑡𝑡 

= 𝑓𝑓(𝑥𝑥) +
1

2𝜋𝜋
�∅𝑥𝑥(𝑡𝑡)
𝜋𝜋

0

𝑐𝑐𝑜𝑜𝑎𝑎𝑛𝑛(𝑡𝑡/2)𝑎𝑎𝐿𝐿𝑛𝑛(𝑛𝑛 + 1)(𝑡𝑡/2)

sin (𝑡𝑡
2
)

𝑑𝑑𝑡𝑡 

Therefore  

𝑡𝑡𝑛𝑛
𝑝𝑝,𝑞𝑞,𝐸𝐸(𝑥𝑥) − 𝑓𝑓(𝑥𝑥) = �� + �+�

𝜋𝜋

𝛿𝛿

𝛿𝛿

1/𝑛𝑛

1/𝑛𝑛

0

� 𝐾𝐾𝑛𝑛(𝑡𝑡)∅𝑥𝑥(𝑡𝑡)𝑑𝑑𝑡𝑡 

= 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 (say) (4.4) 

We have  

|𝐼𝐼1| ≤ � |𝐾𝐾𝑛𝑛(𝑡𝑡)|

1/𝑛𝑛

0

|∅𝑥𝑥(𝑡𝑡)|𝑑𝑑𝑡𝑡 

= 𝑂𝑂(𝑛𝑛)∫ |∅𝑥𝑥(𝑡𝑡)|1/𝑛𝑛
0 𝑑𝑑𝑡𝑡 ( 𝑢𝑢𝑎𝑎𝐿𝐿𝑛𝑛𝑢𝑢 𝐿𝐿𝑒𝑒𝐼𝐼𝐼𝐼𝑎𝑎 3.1)  (4.5) 
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= 𝑜𝑜 �
1

𝛼𝛼(𝑛𝑛)� 

= 𝑜𝑜(1) 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞   (4.6) 

Now  

|𝐼𝐼2| ≤ �|𝐾𝐾𝑛𝑛(𝑡𝑡)|
𝛿𝛿

1/𝑛𝑛

|∅𝑥𝑥(𝑥𝑥)|𝑑𝑑𝑡𝑡 (𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 0 < 𝛿𝛿 < 1) 

= �𝑜𝑜 �
𝑅𝑅(1/𝑡𝑡)
𝑡𝑡𝑅𝑅(𝑛𝑛)

� |∅𝑥𝑥(𝑡𝑡)|
𝛿𝛿

1/𝑛𝑛

𝑑𝑑𝑡𝑡 (𝑢𝑢𝑎𝑎𝐿𝐿𝑛𝑛𝑢𝑢 𝐿𝐿𝑒𝑒𝐼𝐼𝐼𝐼𝑎𝑎 3.2) 

= 𝑜𝑜 �
1

𝑅𝑅(𝑛𝑛)
� � �

𝑅𝑅(1/𝑡𝑡)
𝑡𝑡

� |∅𝑥𝑥(𝑡𝑡)|
𝛿𝛿

1/𝑛𝑛

𝑑𝑑𝑡𝑡 

= 𝑜𝑜 �
1

𝑅𝑅(𝑛𝑛)
� ��

𝑅𝑅(1/𝑡𝑡)
𝑡𝑡

∅𝑥𝑥(𝑡𝑡)�
1/𝑛𝑛

𝛿𝛿

− � 𝑑𝑑 �
𝑅𝑅(1/𝑡𝑡)

𝑡𝑡
�

𝛿𝛿

1/𝑛𝑛

∅𝑥𝑥(𝑡𝑡)� 

= 𝑜𝑜 �
1

𝑅𝑅(𝑛𝑛)� + 𝑜𝑜 �
1

𝛼𝛼(𝑛𝑛)� + 𝑜𝑜 �
1

𝑅𝑅(𝑛𝑛)� � � ∅𝑥𝑥(𝑡𝑡)
𝛿𝛿

1/𝑛𝑛

�𝑑𝑑 �
𝑅𝑅(1/𝑡𝑡)𝛼𝛼(1/𝑡𝑡)

𝑡𝑡𝛼𝛼(1/𝑡𝑡)
��� 

= 𝑜𝑜 �
1

𝑅𝑅(𝑛𝑛)� + 𝑜𝑜 �
1

𝛼𝛼(𝑛𝑛)� + 𝑜𝑜(1) 

= 𝑜𝑜(1), 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞  (4.7) 

Now  

𝐼𝐼3 = �|𝐾𝐾𝑛𝑛(𝑡𝑡)||∅𝑥𝑥(𝑡𝑡)|
𝜋𝜋

𝛿𝛿

𝑑𝑑𝑡𝑡 

By Riemann-Lebesgue theorem and regularity of the method of summability we have 

𝐼𝐼3 = 𝑜𝑜(1), 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞  (4.8) 

Combining (4.6),(4.7) and (4.8) we get  

𝑡𝑡𝑁𝑁
𝑝𝑝,𝑞𝑞,𝐸𝐸 − 𝑓𝑓(𝑥𝑥) = 𝑜𝑜(1)                   

This completes the proof of the theorem. 
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5. Conclusion  

We conclude that the above theorem which is proved in (e,c) means can be proved by (N,p,q)(E,1) means. 
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