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Abstract 

The function of conditional reliability gives the probability of successfully implementing another operation 

following the successful implementation of a previous operation. The prediction of this function can help 

software developers in determining optimal release times. In this paper, the Maximum Likelihood Estimation 

(MLE) method is used to estimate the Non-Homogeneous Poisson Process Log-Logistic (NHPP LL) model’s 

parameters. The upper and the lower bounds of the parameters and conditional reliability function of time 

domain data are obtained. Real data application is conducted using the coefficient of multiple determination 

criteria and observed interval length to evaluate the performance of the NHPP LL model and the constructed 

confidence intervals, respectively. Our results encourage for more assessment of confidence intervals of other 

measures of reliability of the NHPP models. 

Keywords: NHPP log-logistic model; maximum likelihood estimation; confidence interval; conditional 

reliability function; observed interval length. 

1. Introduction 

Software reliability is defined as the probability of failure–free operation of a computer program in a specified 

environment for a specified period of time [1], it received great attention due to its huge impact in our daily life 

[2,3]. Software reliability models based on Non-Homogeneous Poisson Process (NHPP) of time between 

failures class have been considered in the literature and validated as an accurate approach for estimating and 

predicting software reliability [4-7]. Hence, considering the Confidence Intervals (CIs) of software reliability 

can enhance the precision of the predictions for software testing.  

------------------------------------------------------------------------ 

* Corresponding author.  

http://asrjetsjournal.org/


American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2019) Volume 52, No  1, pp 197-208 

198 
 

For software reliability data analysis, Yamada and Osaki [8] examined the Maximum Likelihood (ML) 

estimates using several SRGMs, they founded CI of the mean value function by the conventional NHPP method. 

Yin and Trivedi [9] obtained the confidence limits for the model parameters using the Bayesian method via 

implementing the estimation approach of Yamada and Osaki [8]. Huang [10] also followed the approach of 

Yamada and Osaki [13] to illustrate the CI of the mean value function graphically. 

This paper presents CI of the conditional reliability function of a NHPP model that assumes the time between 

two successive failures follow a Log-Logistic (LL) distribution. The LL distribution was first considered by Fisk 

[11], it is like the log-normal distribution, but with a little narrower peak and heavier tails. The LL distribution is 

among the class of survival time parametric models where the hazard function firstly increases and then 

decreases and at times can be hump-shaped, its mathematical simplicity and practicality has attracted many 

researchers in the field of survival analysis [12-14]. 

The paper layout of is as follows: Section 2 describes the conditional reliability function of the NHPP LL model. 

Section 3 discusses the parameter estimation and reliability prediction with confidence Intervals for the 

parameters and conditional reliability function of the NHPP LL model based on the times between failures data. 

Section 4 presents the analysis of three failure data sets, and Section 5 concludes the paper. 

2. Conditional Reliability Function of a NHPP Model 

A NHPP model aim to estimate the expected number of faults experienced up to a certain point of time. If N(t) 

be the cumulative number of faults detected by the time t, F(t) is the distribution function and denote the 

expected number of faults that would be detected in a given infinite testing time, then the mean value function 

of a NHPP model is given by [15]:        

                              μ(ti; N0, Θ) = N0𝐹(ti; Θ),                                                                                                       (1) 

where, N0 > 0 is the expected number of errors, F(ti; Θ) is the cumulative distribution of ti ,   i = (1, 2, … , n), 

Θ is its unknown parameters. Accordingly, the mean value function of the NHPP Log Logistic Model (NHPP 

LL model) is given below: 

                               μ(ti; N0, 𝜸, β) =
N0𝛾𝑥

β

1+𝛾𝑥β
,                                                                                                            (2) 

where  β > 0  is the shape parameter. and 𝛾 > 0  is positive scale parameter. The corresponding failure intensity 

function can be found by differentiating Eq. (2) as follows:    

                               η(ti; N0, 𝜸, β) =
N𝛾𝛽ti

β−1

(1+𝛾ti
β)
2,                                                                                                       (3) 

The conditional reliability function at time t of a NHPP model is exponential, given by: 

           R(ti; N0, Θ|xn) = exp{−(μ(ti + xn; N0, Θ) − μ(ti; N0, Θ))}, where                                                         (4) 

https://en.wikipedia.org/wiki/Survival_analysis
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R(ti; N0, Θ|xn) is a monotone non-increasing function of ti; R(0; N0, Θ|xn) = 0 and R(∞;N0, Θ|xn) = 1.  

Consequently, the conditional reliability function of the NHPP LL model is given by: 

                         R(ti; N0, 𝛄, β|xn) = exp {−N0γ (
(ti+xn)

β−xn
β

(1+γxn
β
)(1+γ(t+xn)

β)
)}.                                                              (5) 

More details about the NHPP LL model can be found in Al turk [16]. 

3. Confidence Interval Estimation of the NHPP LL Model 

In this paper the MLE method will be applied to the time-interval between failures class of non- homogeneous 

Poisson process (NHPP) models. 

3.1. Confidence interval estimation of the parameters 

Suppose that we have n observations represents the cumulative time to failures denoted by s1, s2, … , sn, then by 

considering Eqs. (2) and (3) the mean value and intensity functions of the NHPP LL model the log-likelihood 

function of N0, 𝛾, and 𝛽 can be written as: 

                    L(N0, 𝜸, β|S) = e
−μ(ti;N0,𝜸,β)∏ 𝜂(ti; N0, 𝜸, β)

n
i=1 .                                                                              (6) 

Taking the natural logarithm of Eq. (6) we obtain: 

                             lnL(N0, 𝜸, β|S) = −μ(ti; N0, 𝜸, β) + ∑ ln 𝜂(ti; N0, 𝜸, β)
𝑛
𝑖=1  

                                                       = −
𝑁0𝛾𝑆𝑛

𝛽

1+𝛾𝑆𝑛
𝛽 + ∑ ln (

N0𝛾𝛽𝑆𝑖
𝛽−1

(1+𝛾𝑆
𝑖
𝛽
)
2)

𝑛
𝑖=1                                                                    (7) 

                                                       = −
𝑁0𝛾𝑆𝑛

𝛽

1+𝛾𝑆𝑛
𝛽 + 𝑛 ln 𝛾 + 𝑛 ln𝛽 + 𝑛 lnN0 + 𝛽∑ 𝑙𝑛𝑠𝑖

𝑛
𝑖=1 − 

                                                          ∑ 𝑙𝑛𝑠𝑖
𝑛
𝑖=1 − 2∑ ln(1 + 𝛾𝑆𝑖

𝛽
)𝑛

𝑖=1                                                                   (8) 

Differentiating the above function with respect to 𝑁0, 𝛾, and 𝛽, we have 

                            

{
 
 
 

 
 
 

𝜕lnL(N0, 𝜸, β|S)
𝜕𝑁0

= −
𝛾𝑆𝑛

𝛽

1+𝛾𝑆𝑛
𝛽 +

𝑛

𝑁0
.

  
𝜕lnL(N0, 𝜸, β|S)

𝜕𝛾
=

𝑛

𝛾
−

𝑁0𝑆𝑛
𝛽

1+𝛾𝑆𝑛
𝛽 + 2∑

𝑆𝑖
𝛽

1+𝛾𝑆
𝑖
𝛽

𝑛
𝑖=1 .

𝜕lnL(N0, 𝜸, β|S)
𝜕𝛽

=
𝑛

𝛽
+∑ 𝑙𝑛𝑠𝑖

𝑛
𝑖=1 −

𝑁0𝛾𝑆𝑛
𝛽
𝑙𝑛𝑆𝑛

(1+𝜸𝑆𝑛
𝛽
)
2 + 2∑

𝛾𝑆𝑖
𝛽
𝑙𝑛𝑆𝑖

1+𝛾𝑆
𝑖
𝛽

𝑛
𝑖=1 .

                                               (9) 

The ML estimates can be obtained by setting the three expressions in Eq. (9) to zero as follows: 
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{
  
 

  
 𝑁0 = 𝑛 (

1+𝜸𝑆𝑛
𝛽

𝛾𝑆𝑛
𝛽 ) .

𝑛

𝛾
−

𝑛

𝛾(1+𝛾𝑆𝑛
𝛽
)
+ 2∑

𝑆𝑖
𝛽

1+𝛾𝑆
𝑖
𝛽

𝑛
𝑖=1 = 0.

𝑛

𝛽
+ ∑ 𝑙𝑛𝑠𝑖 −

𝑛𝑙𝑛𝑆𝑛

1+𝛾𝑆𝑛
𝛽 + 2∑

𝛾𝑆𝑖
𝛽
𝑙𝑛𝑆𝑖

1+𝛾𝑆
𝑖
𝛽

𝑛
𝑖=1 = 0.𝑛

𝑖=1

                                                                               (10) 

Due to the lack of explicit solutions to the second and third expressions of Eq. (10), we numerically find the 

estimates the parameters 𝛾 and 𝛽  then by substituting them in the first expression, N̂0 is obtained. 

To get the variance and covariance matrix for the estimated parameters, we first need to calculate the Fisher 

information matrix [17], which is: 

 

                           F =

[
 
 
 
 
 −

∂2 ln L

∂N0
2 −

∂2 ln L

∂N0 ∂γ
−

∂2 ln L

∂N0 ∂β

−
∂2 ln L

∂γ∂N0
−
∂2 ln L

∂γ2
−
∂2 ln L

∂γ∂β

−
∂2 ln L

∂β∂N0
−
∂2 ln L

∂β ∂γ
−
∂2 ln L

∂β2 ]
 
 
 
 
 

,                                                                                        (11) 

where 

                           
𝜕2lnL(N0, 𝜸, β|S)

𝜕𝑁0
2 =

−𝑛

𝑁0
2 ,                                                                                                              (12) 

                           
𝜕2lnL(N0, 𝜸, β|S)

𝜕𝛾2
= −

𝑛

𝛾2
+

2𝑁0𝑆𝑛
2𝛽

(1+𝛾𝑆𝑛
𝛽
)
3 − 2∑

𝑆𝑖
2𝛽

(1+𝛾𝑆𝑛
𝛽
)
2

𝑛
𝑖=1 ,                                                             (13) 

                        
𝜕2lnL(N0, 𝜸, β|S)

𝜕𝛽2
= −

𝑛

𝛽2
−

2𝑁0𝛾
2𝑆𝑛
2𝛽(𝑙𝑛𝑆𝑛)

2

(1+𝛾𝑆𝑛
𝛽
)
3 + 2𝛾 ∑

𝑆𝑖
𝛽(𝑙𝑛𝑆𝑖)

2

(1+𝛾𝑆
𝑖
𝛽
)
2

𝑛
𝑖=1 ,                                                   (14) 

                        
𝜕2lnL(N0, 𝜸, β|S)

𝜕𝑁0𝜕𝛾
=

−𝑆𝑛
𝛽

1+𝛾𝑆𝑛
𝛽,                                                                                                             (15) 

                      
𝜕2lnL(N0, 𝜸, β|S)

𝜕𝑁0𝜕𝛽
= −

𝛾𝑆𝑛
𝛽
𝑙𝑛𝑆𝑛

(1+𝛾𝑆𝑛
𝛽
)
2, and                                                                                                (16) 

                    
𝜕2lnL(N0, 𝜸, β|S)

𝜕𝛾𝜕𝛽
=

𝑁0𝑆𝑛
𝛽
(α𝑆𝑛

𝛽
−1)𝑙𝑛𝑆𝑛

1+α𝑆𝑛
𝛽 + 2∑

𝑆𝑖
𝛽
𝑙𝑛𝑆𝑖

(1+𝛾𝑆
𝑖
𝛽
)
2

𝑛
𝑖=1 ,                                                                    (17) 

The asymptotic variance-covariance matrix is obtained by: 

                              Σ = F−1                                        
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                                   = [

𝑉𝑎𝑟(𝑁0) Cov(𝑁0, 𝛾) Cov(𝑁0, 𝛽)
Cov(𝑁0, 𝛽) 𝑉𝑎𝑟(𝛾) Cov(𝛾, 𝛽)

Cov(𝛽, 𝑁0) Cov(𝛽, 𝛾) 𝑉𝑎𝑟(𝛽)
],                                                                    (18) 

So, the 100(1− 𝛼)%  asymptotic confidence intervals for the parameters N0, 𝛾, and 𝛽of the NHPP LL model are 

given, respectively, by:  

                                   (𝑁̂0 − 𝑍𝛼
2
√𝑉𝑎𝑟(𝑁̂0),  𝑁̂0 + 𝑍𝛼

2
√𝑉𝑎𝑟(𝑁̂0)  ),                                                                  (19) 

                                     (𝛾 − 𝑍𝛼
2
√𝑉𝑎𝑟(𝛾), 𝛾 + 𝑍𝛼

2
√𝑉𝑎𝑟(𝛾)), and                                                                     (20) 

                                      (𝛽̂ − 𝑍𝛼
2
√𝑉𝑎𝑟(𝛽̂), 𝛽̂ + 𝑍𝛾

2
√𝑉𝑎𝑟(𝛽̂)),                                                                        (21) 

where, 𝑍𝛼 2⁄  is the percentile of standard normal distribution with right-tail probability 𝛼 2⁄ , 𝑉𝑎𝑟(𝑁̂0), 𝑉𝑎𝑟(𝛾), 

and 𝑉𝑎𝑟(𝛽̂) are, respectively, the diagonal elements of the asymptotic variance and covariance matrix given by 

Eq. (18). 

3.2. Confidence interval estimation of the conditional reliability function 

According to the invariance property of the ML estimators, the estimate of the conditional reliability of the 

NHPP LL model is obtained by: 

                       R̂(ti; N̂0, 𝛄̂, β̂|xn) = exp {−N̂0γ̂ (
(ti+xn)

β̂−xn
β̂

(1+γ̂xn
β̂
)(1+γ̂(t+xn)

β̂)
)} ,                                                             (22) 

and its variance is defined as:  

               𝑉(𝑅̂) = (
𝜕𝑅

𝜕𝑁0
)
2

|
 𝑁0=𝑁̂0

𝑉( 𝑁̂0) + (
𝜕𝑅

𝜕𝛾
)
2

|
𝛾=𝛾̂

𝑉(𝛾) + (
𝜕𝑅

𝜕𝛽
)
2

|
𝛽=𝛽̂

𝑉(𝛽̂) +     

                            2 (
𝜕𝑅

𝜕𝛾
) (

𝜕𝑅

𝜕𝑁0 
)|
𝛾=𝛾̂, 𝑁0=𝑁̂0

Cov (𝛾, 𝑁̂0)+2 (
𝜕𝑅

𝜕𝛾
) (

𝜕𝑅

𝜕𝑁0 
)|
𝛾=𝛾̂, 𝑁0=𝑁̂0

Cov (𝛽̂, 𝑁̂0) + 

                           2 (
𝜕𝑅

𝜕𝛾
) (

𝜕𝑅

𝜕𝛽 
)|
𝛾=𝛾̂,   𝛽=𝛽̂ 

Cov (𝛾, 𝛽̂),                                                                                             (23) 

where 

                 
𝜕𝑅

𝜕𝑁0
= −𝛾 (

(𝑡𝑖+𝑥𝑛)
𝛽−𝑥𝑛

𝛽

(1+𝛾𝑥𝑛
𝛽
)(1+𝛾(𝑡+𝑥𝑛)

𝛽)
) 𝑒𝑥𝑝 {−N0𝛾 (

(𝑡+𝑥𝑛)
𝛽−𝑥𝑛

𝛽

(1+𝛾𝑥𝑛
𝛽
)(1+𝛾(𝑡+𝑥𝑛)

𝛽)
)},                                              (24) 
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𝜕𝑅

𝜕𝛾
= N0 (

(𝑡𝑖+𝑥𝑛)
𝛽−𝑥𝑛

𝛽

(1+𝛾𝑥𝑛
𝛽
)(1+𝛾(𝑡𝑖+𝑥𝑛)

𝛽)
)(

((1+𝑥𝑛)
𝛽(1+2𝛾𝑥𝑛

𝛽
)+𝑥𝑛

𝛽
)

(1+𝛾𝑥𝑛
𝛽
)(1+𝛾(𝑡𝑖+𝑥𝑛)

𝛽)
− 1) × 

                              𝑒𝑥𝑝 {−N0𝛾 (
(𝑡𝑖+𝑥𝑛)

𝛽−𝑥𝑛
𝛽

(1+𝛾𝑥𝑛
𝛽
)(1+𝛾(𝑡𝑖+𝑥𝑛)

𝛽)
)}, and                                                                              (25) 

                
𝜕𝑅

𝜕𝛽
=

αN0

(1+𝛾𝑥𝑛
𝛽
)(1+𝛾(𝑡𝑖+𝑥𝑛)

𝛽)
× 

(
𝛾((𝑡𝑖+𝑥𝑛)

𝛽−𝑥𝑛
𝛽
)(𝑥𝑛

𝛽
(1+𝛾(1+𝑥𝑛)

𝛽)𝑙𝑛𝑥𝑛+(𝑡𝑖+𝑥𝑛)
𝛽(1+𝛾𝑥𝑛

𝛽
)𝑙𝑛(𝑡𝑖+𝑥𝑛))

(1+𝛾𝑥𝑛
𝛽
)(1+𝛾(𝑡𝑖+𝑥𝑛)

𝛽)
− (𝑡𝑖 + 𝑥𝑛)

𝛽𝑙𝑛(𝑡𝑖 + 𝑥𝑛) − 𝑥𝑛
𝛽
𝑙𝑛𝑥𝑛

𝛽
) ×    

                             𝑒𝑥𝑝 {−N0𝛾 (
(𝑡𝑖+𝑥𝑛)

𝛽−𝑥𝑛
𝛽

(1+𝛾𝑥𝑛
𝛽
)(1+𝛾(𝑡𝑖+𝑥𝑛)

𝛽)
)}.                                                                                      (26) 

We employ the central limit theorem of the conditional reliability function and gets the asymptotic 100(1− 𝛼)%  

confidence bounds for the actual values as follows:   

                            (𝑅̂ − 𝑍𝛼
2
√𝑉𝑎𝑟(𝑅̂), 𝑅̂ + 𝑍𝛾

2
√𝑉𝑎𝑟(𝑅̂)).                                                                                   (27) 

where, 𝑍𝛼 2⁄  is the percentile of standard normal distribution with right-tail probability 𝛼 2⁄ , 𝜆̂ is obtained from 

Eq. (22), and  𝑉𝑎𝑟(𝜆̂) is defined by Eq.(23). 

4. Numerical Application 

A numerical application is illustrated in this section. The confidence interval estimation of the parameters and 

conditional reliability function of the NHPP LL model is investigated based on three real data sets. The NTDS 

data is obtained from Goel and Okumoto [17], it consists of 34 failures. The CSR2 and SYS2 data sets are from 

Lyu [3], the number of failures in these data sets are 129, and 86 failures, respectively. The three data sets are 

shown in Tables [1-3].  

Table 1:  NTDS data, 34 failures. 

9 12 11 4 7 2 5 8 5 7 1 6 1 9 4 1 3 3 6 1 

11 33 7 91 2 1 87 47 12 9 135 258 16 35       

The coefficient of multiple determination R2 is used in our application to evaluate the model performance. Its 

formula is as follows [18]: 

                                   R2 = 1 −
∑ (yi −m̂(ti))

2𝑛
𝑖=1

∑ (yi −∑
yk

𝑛⁄
𝑛
𝑘=1 )

2
𝑛
𝑖=1

.                                                                                            (28) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055612/table/tab1/
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It takes the values from 0 to1. The larger value of R2 indicates better model performance. Though, the observed 

interval length is used to compare the CIs. The smaller the length, the better the confidence interval. 

Table 2: CSR2 data, 129 failures 

760 758 303 6 22 14 42 4 84 15 221 14 15 

41 1 153 409 54 24 44 180 397 19 145 36 54 

1337 163 8 1 17 16 87 19 29 0 5 360 10 

11 100 252 460 179 3 24 253 163 54 137 328 3 

9 12 18 9 75 15 366 428 212 115 264 269 276 

1 999 30 495 472 344 550 131 47 92 863 991 35 

9549 249 607 83 614 352 673 4179 111 75 407 288 894 

1314 845 55 409 36 15 1960 60 19 20 79 24 1737 

7984 10 20 338 250 1682 212 287 56 4973 3500 59 98 

2439 1812 6203 385 3500 4892 687 62 2796 3268 3845 76  

 

Table 3: SYS2 data, 86 failures. 

479 266 277 554 1034 249 693 597 117 170 117 1274 469 

1174 693 1908 135 277 596 757 437 2230 437 340 405 535 

277 363 522 613 277 1300 821 213 1620 1601 298 874 618 

2640 5 149 1034 2441 460 565 1119 437 927 4462 714 181 

1485 757 3154 2115 884 2037 1481 559 490 593 1769 85 2836 

213 1866 490 1487 4322 1418 1023 5490 1520 3281 2716 2175 3505 

725 1963 3979 1090 245 1194 994 3902      

 

4.1. Numerical results 

The ML estimates and CIs at 95% significance level of the parameters N0, 𝛾, and 𝛽 are assessed using Eqs. (19), 

(20), and (21) corresponding to the last failure number of each data sets. For the comparison purpose the 

observed interval lengths of the CIs are computed as follows:  

                              2𝑍𝛼 2⁄ [𝑉𝑎𝑟(N0̂)]
1 2⁄ , 2𝑍𝛼 2⁄ [𝑉𝑎𝑟(𝛾))]

1 2⁄  , 2𝑍𝛼 2⁄ [𝑉𝑎𝑟(𝛽̂)]
1 2⁄ . 

Also, to assess the model performance the coefficient of multiple determination criteria is computed for each of 

the selected data set, the results are summarized in Table 4.  
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Table 4: Estimated Parameter Values of the NHPP LL Model and 95% Confidence Intervals. 

  C.I. 

Lower 

C.I. 

Lower 

C.I. 

lower 

 

  N̂0 γ̂ β̂  

  C.I. 

Upper 

C.I. 

Upper 

C.I. 

upper 

 

Data set Failure 

Number 

Observed 

Interval 

Length 

Observed 

Interval 

Length 

Observed Interval 

Length 
R2 

Criteria 

  53.3639 0.0387 0.4484  

NTDS data 34 53.614 0.0387 0.4947 0.7724 

  53.8641 0.0387 0.5411  

  0.5002 1e-04 0.0927  

  204.4341 0.024600 0.2936  

CSR2 data 129 205.0794 0.024601 0.303 0.6393 

  205.7247 0.024603 0.3123  

  1.2907 3.32e-06 0.0188  

  199.9347 0.0199058 0.2704  

SYS2 data 86 201.0775 0.0199064 0.2745 0.6052 

  202.2204 0.0199069 0.2786  

  2.2857 1.18e-06 0.0082  

 

For the last three failure numbers, Table 5 illustrates the estimated conditional reliability of the NHPP LL model 

which is calculated using Eq. (22) and the corresponding 95% CIs with their observed interval lengths which 

are found using Eq. (27) and  2𝑍𝛼 2⁄ [𝑉𝑎𝑟(𝑅̂)]
1 2⁄ , respectively. 

Table 5: 95% Confidence Intervals of the conditional reliability function of the NHPP LL model. 

 

 

Data set 

 

 

Time to 

failure 

 

Estimated 

reliability 

at Time t 

 

C.I. 

lower 

 

C.I. 

upper 

 

Observed 

Interval 

Length 

 258 0.117 0.091 0.143 0.0536 

NTDS data 16 0.113 0.087 0.139 0.0528 

 35 0.1047 0.0787 0.1307 0.052 

 3268 0.1592 0.1797 0.2002 0.0413 

CSR2 Data 3845 0.1671 0.1466 0.1876 0.0412 

 76 0.1669 0.1464 0.1874 0.041 

 1194 0.168 0.1345 0.2016 0.0679 

SYS2 data 994 0.1652 0.1316 0.1987 0.0675 

 3902 0.1545 0.121 0.1881 0.6052 
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Figures [1-3] demonstrate the estimated conditional reliability function and the corresponding 95% CIs for each 

selected data sets. 

 

Figure 1: Estimated reliability with 95% interval based on the NHPP LL model, NTDS data 

 

 

Figure 2: Estimated reliability with 95% interval based on the NHPP LL model, CSR2 Data 
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Figure 3: Estimated reliability with 95% interval based on the NHPP LL model, SYS2 data 

From Tables 4 and 5, it can be noticed that the CIs estimated by the MLE method have small observed interval 

length which indicates the accuracy of these CIs. The assessment results, in Table 4, show that the estimator 

𝛾 has the shortest observed interval length of the three selected data sets. Also, according to the model accuracy 

using the R2criteria the results in Table 4 show that the NHPP model fits best the NTDS data, then CSR2 Data 

and SYS2 data take the second and third rank, respectively. Regarding the lengths of the CIs presented in Table 

5 it can be seen that as the number of detected failures increases narrower intervals of the conditional reliability 

function are obtained. The estimator R̂ has the shortest observed interval length for the CSR2 Data. 

5. Conclusion 

It is essential to the software reliability measurement to obtain the confidence bounds for the reliability metrics 

at any future time t. The reliability function of a software system is an important metric for describing the 

system’s reliability. Our main contribution in this paper is to construct CI for the conditional reliability function 

of a NHPP model based on the LL distribution. 

 CIs of the parameters and conditional reliability function of the NHPP LL model have been constructed based 

on the MLE method and evaluated via the observed interval length. The model performance has been checked 

using the R2 criteria.  

The application results demonstrate reasonable results for the CIs of the conditional reliability, which can help 

in improving the decision-making quality of software testing and debugging. Future research may find CIs for 

other reliability metrics of the NHPP models.  
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