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Abstract 

In this paper Bayesian methods is performed on a medical trial Seizure count data set by introducing the new 

three parameter generalized Poisson model GPM(α,β,λ) as an alternative model to the standard Poisson model 

SPM(λ) which is considered on an earlier work for the generalized linear mixed model. The new model is 

developed by introducing two more parameters α and β called indicator parameters. The main advantage of an 

indicator parameter is that it gives the new Poisson model the mixture (when α>0,β=1,2) and non-mixture (when 

α=0) options. Another feature of proposed new model is that it generalize the posterior of the parameters to 

predict the behavior of the Seizure counts data, in agreement with generalized linear mixed model. Unlike 

earlier authors, who confined and limited their work only on standard Poisson model SPM(λ), to analyze the 

counts data in generalized linear mixed model, which make the new model more resilience and litheness. The 

parameters of the new model will be estimated using Bayesian approach that serves as a subtle tool for model 

selection and identification. An illustration is provided using the Seizure count data. The posterior summaries 

using Markov Chain Monte Carlo (MCMC) Gibbs sampling approach are presented for the new model for 

different values of the parameters. The study of the estimated parameters would help the users to have more 

prospect and clarity about the role of the new model. It is found that using proposed new model in generalized 

linear mixed model has more resiliency than standard Poisson model considered earlier. The proposed model is 

fully adaptive to the available data and gives scientists another option for modeling the data.  

Key words: Bayesian predictions; generalized Poisson model; generalized posterior; Gibbs sampling; Hierarchical  

model; Markov Chain Monte Carlo. 
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1. Introduction 

Multiple problems in applied statistical data counts research hinder the usage and application of standard 

Poisson model, and preferably circulate to a more generalized and extended setting of the Poisson model. This 

claim is well established in literature, see for example the work of  [3,4,5,6,7,8,9]. 

The main contribution of this paper is to introduce an efficient and more resilience computational Bayesian 

approach by introducing a new generalized statistical model with three parameters called generalized Poisson 

model GPM(α,β,λ) and compare it using clinical trial counts data analysis, with the standard Poisson model 

SPM(λ) implemented in [[2] model III]. The role of new parameters in the new generalized model as indicator 

parameters is to select, identify the more fit, more realistic, and genuine model for the data, and study the 

problem involving generalized linear mixed model of uncertain events in more extensive and comprehensive 

setting. In real life situation, problems involving new generalized and extended statistical model based 

prediction are well suited using the Bayesian methodology [see [10,11,12,13]]. The motivation of this work is to 

explore these new statistical models which can be implemented to provide an adequate fit for the real data than 

well-known available models. The Markov chain Monte Carlo (MCMC) Gibbs sampling methods are used to 

simulate direct draws from the new statistical models of interest. In section 2, we have proposed new 

generalized linear mixed model that considers the new generalized Poisson model GPM(α,β,λ) and introduce 

some of its properties. In section 3, we have developed the procedure to estimate the parameters of the 

generalized linear mixed model involving the new generalized Poisson model using Bayesian methodology. The 

Bayesian estimates of the parameters are obtained using Markov Chain Monte Carlo (MCMC) simulation 

technique based on the assumption that priors are independent, The generalized posterior analysis is performed 

and estimated. We have examined the issue of model compatibility with the work of [[2] model III] using new 

predictive results. A real medical trial Seizure count data set [see [1]] are analyzed for illustrating the 

application and the proposed Bayesian approach. 

2. The model 

In this section a new three parameter generalized Poisson model GPM(α,β,λ) is introduced with probability 

function 

(2.1)  fα,β,λ(x) =� 1
𝐶𝐶𝛼𝛼,β,𝜆𝜆

� 𝜆𝜆𝑥𝑥 �1+𝛼𝛼𝑥𝑥
1+𝛼𝛼𝛼𝛼

�
𝛽𝛽 𝑒𝑒−𝜆𝜆

𝑥𝑥!
,  λ>0, α≥0, β=1,2, and x= 0,1,2,.., 

where 

𝐶𝐶𝛼𝛼,β,𝛼𝛼  = ∑ 𝜆𝜆𝑥𝑥 �1+𝛼𝛼𝑥𝑥
1+𝛼𝛼𝛼𝛼

�
β 𝑒𝑒−𝜆𝜆

𝑥𝑥!
∞
𝑥𝑥=0 . 

When α =0, the mean in (2.1) is E[x]=λ, and when α >0, β=1, we have 𝐶𝐶𝛼𝛼,1,𝛼𝛼=1, and the nean is 

(2.2)   E[x]= 𝛼𝛼𝛼𝛼
1+𝛼𝛼𝛼𝛼

+𝜆𝜆 
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The mean when α >0, β=2, is 

(2.3)   E[x]= (𝛼𝛼(1+2𝛼𝛼)+2)𝛼𝛼𝛼𝛼
1+𝛼𝛼(1+𝛼𝛼)𝛼𝛼2+2𝛼𝛼𝛼𝛼

+𝜆𝜆. 

In some particular cases the parameters α, and β of model (2.1) can be seen as providing not only an extra 

flexibility to the probability function, but also helps to express probability distribution as an exact form of 

mixture of probability distributions under certain conditions. We should emphasize that eqn (2.1) can be reduced 

to standard Poisson model (f0,β,λ(x)=Poisson(λ)). 

The generalized linear mixed model (model III) considered by [2] is generalized by using the new probability 

function (2.1) when α≥ 0, and β =1, 2. For distinctness, the model is explained through the data from [1] 

concerning seizure counts in a randomized medical trial of anti-conversant therapy in epilepsy. For ready 

reference, the data is reproduced in Table A (see Appendix) which shows the seizure counts for 59 hospitalized 

patients. The covariates are treatment (0=Placebo, 1=Progabide drug), 8-week baseline seizure counts, and age 

in years. While considering the model, we used the same transformation which [2] considered in their (model 

III). For example, “Base” in the data set is transformed to log(Base/4), Age to log(Age), and the treatment times 

log(Base/4) where their interaction is included. To test the new model (2.1), we also considered the random 

effects for both individual subjects SS1j and also subject by visit random effects SSjk variability within subjects. 

V4 is an indicator variable for the 4th visit. The model considered below leads to a Markov chain that is highly 

correlated with poor convergence properties. In order to overcome this poor convergence property, each 

covariate is standardized about its mean to ensure approximate prior independence between the regression 

coefficients as shown below: 

(i) SPMM : Standard Poisson Mixed Model [see [2] model III] 

(1) y
jk
  ~  �𝜆𝜆𝑗𝑗𝑗𝑗�

𝑥𝑥𝑗𝑗𝑗𝑗 𝑒𝑒−𝜆𝜆𝑗𝑗𝑗𝑗

𝑥𝑥𝑗𝑗𝑗𝑗!
,   

(2) log(𝜆𝜆𝑗𝑗𝑗𝑗 )= C
0
 + C

Base log�𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑗𝑗
4
� + C

Trt 
 Trt

j
 + C

BT
Trt

j log�𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑗𝑗
4
�+ C

Age Age
j
 +C

V4
V4+S S1

j
 + SS

jk
 

(3) SS1j  ~ Normal(0, tb1)  

(4) SSjk ~ Normal(0, tb) 

(ii) GPMM 1: Generalized Poisson Mixed Model 1 

(1) y
jk
  ~  �𝜆𝜆𝑗𝑗𝑗𝑗�

𝑥𝑥𝑗𝑗𝑗𝑗 �
1+𝛼𝛼𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
1+𝛼𝛼𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗

� 𝑒𝑒
−𝜆𝜆𝑗𝑗𝑗𝑗

𝑥𝑥𝑗𝑗𝑗𝑗!
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(2) log(
𝛼𝛼𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗

1+𝛼𝛼𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗
+𝜆𝜆𝑗𝑗𝑗𝑗 )=C

0
 + C

Base log�𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑗𝑗
4
�+ C

Trt 
 Trt

j
 +C

BT
Trt

j log�𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑗𝑗
4
�+C

Age Age
j
 +C

V4
V4+SS1

j
 + SS

jk
 

(3) SS1j  ~ Normal(0, TS1)  

(4) SSjk ~ Normal(0,TS) 
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(iii) GPMM 2: Generalized Poisson Mixed Model 2  

(1) y
jk
  ~  �𝜆𝜆𝑗𝑗𝑗𝑗�

𝑥𝑥𝑗𝑗𝑗𝑗 �
1+𝛼𝛼𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗
1+𝛼𝛼𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗

�
2 𝑒𝑒−𝜆𝜆𝑗𝑗𝑗𝑗

𝑥𝑥𝑗𝑗𝑗𝑗!
,   

(2) log��
(𝛼𝛼𝑗𝑗𝑗𝑗�1+2𝛼𝛼𝑗𝑗𝑗𝑗�+2)𝛼𝛼𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗

1+𝛼𝛼𝑗𝑗𝑗𝑗�1+𝛼𝛼𝑗𝑗𝑗𝑗�𝛼𝛼𝑗𝑗𝑗𝑗2+2𝛼𝛼𝑗𝑗𝑗𝑗𝛼𝛼𝑗𝑗𝑗𝑗
� + 𝜆𝜆𝑗𝑗𝑗𝑗� 

         = C
0
 + C

Base log�𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑗𝑗
4
� + C

Trt 
 Trt

j
 + C

BT
Trt

j log�𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑗𝑗
4
�+ C

Age Age
j
 +C

V4
V4+SS1

j
 +SS

jk
 

(3) SS1j  ~ Normal(0, TS1)  

(4) SSjk ~ Normal(0, TS) 

We should emphasis that all coefficients and precisions of model (i)-(iii) are given independent "non-

informative'' priors.   

3. Bayesian updating prediction data analysis 

A realistic Bayesian model for the Seizure count data is to suggest the following hierarchical model:  

(a) At the first stage we assume that the count data follow the SPM, GPM 1, and GPM 2, respectively.  

(b) At the second stage we assume the following prior specification for the parameter α~exponential(0.1), 

and also we assume the following prior specifications  

C0 ~ Normal(0.0,1.0E-5)               

  CBase ~ Normal(0.0,1.0E-5)             

  CTrt ~ Normal(0.0,1.0E-5);            

  CBT ~ Normal(0.0,1.0E-5)             

  CAge ~ Normal(0.0,1.0E-5)             

  CV4 ~Normal(0.0,1.0E-5) 

  SS1 ~ Gamma(1.0E-4,1.0E-4); where SS1 = 1
√𝑇𝑇𝑇𝑇1

 

  SS ~ Gamma(1.0E-4,1.0E-4); where SS =  1
√𝑇𝑇𝑇𝑇

        

A Markov Chain Monte Carlo (MCMC) Gibbs sampling approach implemented in using OPENBUGS@ 

computer software can give an analysis of estimates of each parameter.  
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A burn in of 1000 updates followed by a further 20k updates is implemented. The table 3.1, represent the 

coefficient estimates for SPMM, the table 3.2, represent the coefficient estimates for GPMM 1, where the table 

3.3, represent the coefficient estimates for GPMM 2, along with standard deviation, mean and MC error.  

 

 Table 3.1: Bayesian summary 
for α=0, Model SPMM 

Table 3.2: Bayesian summary for 
α>0, β=1, Model GPMM 1 

Table 3.3: Bayesian summary 
forα>0, β=2, Model GPMM 2 

 Mean SD MC error Mean SD MC error Mean SD MC error 

CAge 0.4657 0.3684 0.01396 0.2941 0.484 0.04712 -0.6236 0.1239 0.01227 
CBT 0.3385 0.2151 0.01208 0.1293 0.1821 0.01776 -0.1736 0.1839 0.01876 

CBase 0.8786 0.1462 0.008372 0.9292 0.2052 0.01994 1.198 0.1542 0.01504 
CTrt -0.9357 0.4251 0.02097 -0.6574 0.3822 0.03727 -0.1222 0.3136 0.03208 
CV4 -0.1022 0.0869 0.001852 -0.1292 0.09721 0.008823 -0.1712 0.09761 0.009652 
C0 -1.332 1.248 0.04975 0.4442 1.765 0.1721 2.862 0.3045 0.03032 
SS 0.3647 0.0561 0.002633 0.35 0.05668 0.004067 0.447 0.07737 0.006636 
SS1 0.4989 0.0730 0.002762 0.5969 0.1159 0.008981 0.6556 0.08867 0.004404 

 

 

Figure 1: Comparisons of Seizure count data estimates between models SPMM, GPMM 1, and GPMM 2 

 

  

 

CAge CBT CBase CTrt CV4 C0 SS SS1
SPMM 0.4657 0.3385 0.8786 -0.9357 -0.1022 -1.332 0.3647 0.4989
GPMM 1 0.2941 0.1293 0.9292 -0.6574 -0.1292 0.4442 0.35 0.5969
GPMM 2 -0.6236 -0.1736 1.198 -0.1222 -0.1712 2.862 0.447 0.6556
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Table 3.4:  Bayesian summary estimates for α, whe    αjk≥ 0, β=1 Model GPMM 1 

j 𝛂𝛂�j1 𝛂𝛂�j2 𝛂𝛂�j3 𝛂𝛂�j4 

1 0.8823 1.08 1.132 1.062 
2 1.087 0.8857 1.078 1.066 
3 1.082 0.8871 0.9573 0.7573 
4 0.9502 0.9375 1.199 0.9295 
5 1.499 0.7103 1.275 0.5273 
6 1.104 1.373 0.8225 0.8517 
7 0.7375 0.9802 0.9626 1.148 
8 0.4216 1.021 0.9892 1.376 
9 1.093 1.014 0.9765 1.045 
10 0.4931 0.5497 1.039 1.087 
11 0.543 1.223 1.688 0.5752 
12 0.6814 1.177 0.9981 1.257 
13 1.086 1.052 0.8331 1.233 
14 1.34 1.118 0.9119 0.6844 
15 0.9234 0.5582 1.339 1.297 
16 0.5096 1.069 1.063 0.9632 
17 0.943 0.9274 1.007 1.004 
18 0.811 1.033 1.041 0.8966 
19 1.171 0.9419 1.26 0.9103 
20 1.16 1.037 0.8249 0.6609 
21 1.1 1.016 1.105 0.9467 
22 1.086 0.9936 1.086 0.9526 
23 1.2 1.137 1.105 0.8738 
24 0.926 0.6431 1.481 0.8669 
25 1.54 1.19 0.28 1.05 
26 1.07 1.135 1.079 1.09 
27 1.032 1.159 0.9099 1.094 
28 0.9833 0.8421 1.013 0.9546 
29 0.9596 0.759 1.094 1.127 
30 0.9239 1.031 0.8298 1.214 
31 0.9021 0.89 0.9791 0.9116 
32 1.04 0.7122 1.145 1.007 
33 1.243 0.8326 0.7402 1.042 
34 0.962 1.084 1.231 1.046 
35 0.6823 0.9127 0.8105 0.8421 
36 0.9982 1.047 0.7897 1.036 
37 1.099 0.8714 0.954 0.876 
38 1.407 1.019 1.018 0.9441 
39 1.286 0.3608 1.471 1.111 
40 1.034 1.074 1.108 0.895 
41 0.9065 1.059 0.8691 0.9005 
42 0.8442 0.93 0.9706 1.025 
43 1.293 1.062 0.555 0.8473 
44 0.7172 1.129 1.345 0.7959 
45 0.4504 1.157 1.273 1.121 
46 1.13 1.102 1.04 0.9358 
47 1.141 0.8311 0.9854 0.9184 
48 1.087 1.099 0.9017 0.8808 
49 0.5053 1.041 0.874 0.9479 
50 0.9708 1.093 1.211 0.9566 
51 0.8744 1.04 1.193 0.9136 
52 1.213 1.073 1.224 0.8332 
53 0.8828 1.294 0.5057 1.063 
54 0.7711 1.117 0.9973 0.983 
55 1.086 0.8802 0.9749 1.059 
56 1.644 0.3578 0.4772 1.012 
57 1.092 0.9596 0.9162 1.123 
58 0.9181 0.909 0.9127 0.904 
59 1.142 0.9079 1.001 1.093 
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Table 3.5:  Bayesian summary estimates for α, whe  αjk≥ 0, β=2 Model GPMM 2 

j 𝛂𝛂�j1 𝛂𝛂�j2 𝛂𝛂�j3 𝛂𝛂�j4 

1 1.031 1.202 1.215 1.21 
2 1.209 1.018 1.259 1.208 
3 1.278 1.123 0.6939 0.9935 
4 1.089 1.113 1.207 1.115 
5 1.408 0.8496 1.343 0.6483 
6 1.17 1.342 0.9277 0.9533 
7 0.8745 1.137 0.6919 1.305 
8 0.5043 0.9518 0.9845 1.236 
9 1.148 1.086 1.068 1.128 
10 0.5782 0.6268 1.102 0.6778 
11 0.6367 1.15 1.546 0.629 
12 0.7762 1.188 1.057 1.307 
13 1.184 1.177 0.9624 1.283 
14 1.263 1.122 0.943 0.7398 
15 0.9914 0.7048 1.344 1.288 
16 0.6389 0.6469 0.6708 1.05 
17 0.6931 0.7021 1.235 1.243 
18 0.833 1.097 1.025 0.9002 
19 1.175 1.065 1.286 1.059 
20 1.259 0.6647 1.005 0.8706 
21 1.214 1.135 1.209 1.155 
22 1.26 1.162 1.247 1.139 
23 1.285 1.243 1.227 1.041 
24 1.018 0.7938 1.435 0.9764 
25 1.4 1.175 0.3752 0.9974 
26 1.359 1.246 1.312 1.294 
27 1.21 1.199 1.106 1.312 
28 1.039 0.9325 1.072 0.9867 
29 1.048 0.8666 1.191 1.173 
30 0.9511 1.057 0.911 1.251 
31 0.6809 1.141 1.268 0.6667 
32 1.224 0.922 1.183 1.173 
33 1.29 1.024 0.9364 1.175 
34 1.156 1.217 1.224 1.188 
35 0.7561 0.9618 0.8775 0.8733 
36 1.093 1.197 0.917 1.162 
37 1.276 1.16 0.6969 1.103 
38 1.388 1.091 1.074 1.017 
39 1.271 0.4717 1.384 1.188 
40 1.365 1.341 1.358 0.7597 
41 0.7086 1.28 1.131 0.712 
42 1.011 1.15 0.6643 1.22 
43 1.197 1.012 0.6524 0.8668 
44 0.8456 1.231 1.332 0.9322 
45 0.5273 1.148 1.232 1.086 
46 1.258 1.281 1.317 1.259 
47 1.224 0.9063 1.045 0.9752 
48 1.354 1.342 0.7529 0.7762 
49 0.7273 0.8665 0.7551 0.8251 
50 1.143 1.273 1.317 1.124 
51 1.002 1.141 1.199 1.022 
52 1.199 1.232 1.186 1.05 
53 0.9191 1.234 0.5913 1.006 
54 0.9328 1.222 1.147 0.6903 
55 1.246 1.038 1.155 1.244 
56 1.336 0.4808 0.5539 1.086 
57 1.275 1.257 0.6867 1.259 
58 0.7632 0.7869 0.8097 0.8158 
59 1.215 1.083 1.198 1.303 
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We should emphasizes that the estimates in (Tables 3.1-3.5 and Figure 1) give more information about the 

behavior of seizure counts data than that of [2] who considered SPMM only in their work. This can be easily 

seen, by comparing the above results  with their reported estimates, and they are: CAge= 0.47 +/- 0.35, CBT= 

0.34 +/- 0.21, CBase = 0.86 +/- 0.13, CTrT= -0.93 +/- 0.40, CV4= -0.10 +/- 0.90, C0 = -1.27 +/- 1.2, SS1 = 0.48 

+/- 0.06, and SS = 0.36+/-0.04.  

Examination of the above simulations yields the following observations:  

1. The posterior mean of the estimate CAge of models SPMM, GPMM 1, and GPMM 2 are 0.4657, 0.2941, 

and -0.6236, respectively. There is a clear and substantial shift of the posterior mean to the left. The 

posterior standard deviation (SD) is 0.3684, 0.484 and 0.1239, respectively, and hence a decrease in 

posterior SD. Comparison of the MC error for SPMM, GPMM 1 and GPMM 2 shows that the MC 

error are about the same. 

2. The posterior mean of the estimate CBt of models SPMM, GPMM 1, and GPMM 2 are 0.3385, 0.1293, 

and -0.1736 respectively. There is a clear and substantial shift of the posterior mean to the left. The 

posterior standard deviation (SD) is 0.1462, 0.1821 and 0.1839, respectively, and hence about the same 

result in posterior SD. Comparison of the MC error for SPMM, GPMM 1 and GPMM 2 shows also, 

that the MC error are about the same. 

3. The posterior mean of the estimate CBase of models SPMM, GPMM 1, and GPMM 2 are 0.8786, 0.9292 

and 1.198, respectively. There is a slight shift of the posterior mean to the right. Comparison of the 

posterior standard deviation (SD) and the MC error for SPMM, GPMM 1 and GPMM 2 shows that 

they are about the same. 

4. The posterior mean of the estimate CTrt of models SPMM, GPMM 1, and GPMM 2 are -0.9357, -0.6574 

and -0.1222, respectively. There is a clear and substantial shift of the posterior mean to the right. The 

posterior standard deviation (SD) is 1.248, 1.765 and 0.3045, respectively, and hence a decrease in 

posterior SD. Comparison of the posterior standard deviation (SD) and the MC error for SPMM, 

GPMM 1 and GPMM 2 shows that they are about the same. 

5. The posterior mean of the estimate CV4 of models SPMM, GPMM 1, and GPMM 2 are -0.1022, -0.1292 

and -0.1712, respectively. There is a slight shift of the posterior mean to the lift. The posterior standard 

deviation (SD) is 1.248, 1.765 and 0.3045, respectively, and hence a decrease in posterior SD. 

Comparison of the posterior standard deviation (SD) and the MC error for SPMM, GPMM 1 and 

GPMM 2 shows that they are about the same. 

6. The posterior mean of the estimate C0 of models SPMM, GPMM I, and GPMM 2 are -1.332, 0.4442 and 

2.862, respectively. There is a clear and substantial shift of the posterior mean to the right. The 

posterior standard deviation (SD) is 1.248, 1.765 and 0.3045, respectively, and hence a decrease in 

posterior SD. Comparison of the MC error for SPMM, GPMM I and GPMM 2 shows that the MC error 

are about the same.  

7. The posterior mean of the estimate SS of models SPMM, GPMM I, and GPMM 2 are 0.3647, 0.35 and 

0.447, respectively. There is a slight shift of the posterior mean to the right. Comparison of the 

posterior standard deviation (SD) and MC error for SPMM, GPMM I and GPMM 2 shows that the MC 

error are about the same.  
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8. The posterior mean of the estimate SS1 of models SPMM, GPMM I, and GPMM 2 are -1.332, 0.4442 

and 2.862, respectively. There is a clear and substantial shift of the posterior mean to the right. The 

posterior standard deviation (SD) is 1.248, 1.765 and 0.3045, respectively, and hence a decrease in 

posterior SD. Comparison of the MC error for SPMM, GPMM I and GPMM 2 shows that the MC error 

are about the same. 

9. The posterior mean of the estimate α of models GPMM 1 (table 3.4) vary between (0.4216, 1.54) in the 

first two weeks of treatments, for second two weeks of treatments it vary between (0.3608, 1.373), for 

third two weeks of treatments it vary between (0.28, 1.47), and for fourth two weeks of treatments it 

vary between (0.5273, 1.376). This indicate that the seizure counts data are mixing in the generalized 

linear mixed model GPMM 1. These findings do not sport the work done by [2] using SPM(λ). We 

also note the following embodiment: (i) patient (No. 8) is an interesting subject, where for the first two 

weeks of treatments, he/she has the lowest estimated value α at 0.4216 (with high number of seizure 

counts at 40 counts), at the second two weeks of treatments, the estimate increased to 1.021 (number of 

seizure counts decreased to 20 counts), at the third two weeks of treatments, he/she has the estimate at 

0.8982 (number of seizure counts increased by one count to 21 counts), and at the fourth two weeks of 

treatments, he/she has the estimate at 1.376 which is the highest estimate in the fourth two week 

treatments group (with a drop in the number of seizure counts to 12 counts). This maybe, related to the 

factor effect of either baseline data on the number of epileptic seizures which is the next highest at 52 

counts, and/or to his/her age at 42 years old (which is the highest in the age group). (ii) patient (No. 25) 

where for the first two weeks of treatments, he/she has the highest estimated value α at 1.54 (with 

number of seizure counts at 18 counts), at the second two weeks of treatments, the estimate is 1.19 

(number of seizure counts increased to 24 counts), at the third two weeks of treatments, he/she has the 

lowest estimate of the group at 0.28 (number of seizure counts jumped at 76 counts), and at the fourth 

two weeks of treatments, he/she has the estimate at 1.05 (with a drop in the number of seizure counts to 

25 counts). This may be, related to the factor effect of either baseline data on the number of epileptic 

seizures which is high at 55 counts, and/or to his/her age at 30 years old . (iii) patient (No. 39) where 

for the first two weeks of treatments, he/she has the estimated value α at 1.286 (with low number of 

seizure counts at 4 counts), at the second two weeks of treatments, he/she has the lowest estimate at 

0.368 (number of seizure counts increased to 18 counts), at the third two weeks of treatments, he/she 

has the highest estimate of the group at 1.471 (number of seizure counts dropped to 2 counts), and at 

the fourth two weeks of treatments, he/she has the estimate at 1.111 (with a slight increase in the 

number of seizure counts to 5 counts). This maybe, related to the factor effect of either baseline data on 

the number of epileptic seizures which is at 41 counts, and/or to the type of drug treatment (Progabide 

drug), and/or to his/her age at 22 years old. 

10. The posterior mean of the estimate α of models GPMM 2 (table 3.5) vary between (0.5043,1.408) in 

the first two weeks of treatments, for second two weeks of treatments it vary between (00.4717,1.341), 

for third two weeks of treatments it vary between (0.5539,1.546), and for fourth two weeks of 

treatments it vary between (0.629,1.312). Which as indicated earlier for GPMM 1 the seizure counts 

data are mixing in the generalized linear mixed model GPMM 2 and hence, they do not sport the work 

done by [2] Breslow and Clayton (1993) using SPM(λ). We also note the following embodiment: (i) 
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patient (No. 5), for the first two weeks of treatments, he/she has the highest estimated value α at 1.408 

(with low number of seizure counts at 7 counts), at the second two weeks of treatments, the estimate 

deccreased to 0.8496 (number of seizure counts increased to 18 counts), at the third two weeks of 

treatments, he/she has the estimate at 1.343 (number of seizure counts decreased 9 counts), and at the 

fourth two weeks of treatments, he/she has the estimate at 0.6843 (with a jump in the number of seizure 

counts to 21 counts). This maybe, related to the factor effect of either baseline data on the number of 

epileptic seizures which is the next high at 66 counts, and/or to his/her age at 22 years old. (ii) patient 

(No. 11) where for the first two weeks of treatments, he/she has the estimated value α at 0.6367 (with 

number of seizure counts at 26 counts), at the second two weeks of treatments, the estimate is 1.15 

(number of seizure counts decreased to 12 counts), at the third two weeks of treatments, he/she has the 

highest estimate of the group at 1.516 (number of seizure counts down to 6 counts), and at the fourth 

two weeks of treatments, he/she has the estimate at 0.629 which is lowest in the group (with an 

increase in the number of seizure counts to 22 counts). This maybe, related to the factor effect of either 

baseline data on the number of epileptic seizures which is high at 52 counts, and/or to his/her age at 36 

years old. (iii) patient (No. 39) where for the first two weeks of treatments, he/she has the estimated 

value α at 1.271 (with low number of seizure counts at 4 counts), at the second two weeks of 

treatments, he/she has the lowest estimate at 0.4717 (number of seizure counts increased to 18 counts), 

at the third two weeks of treatments, he/she has the estimate at 1.384 (number of seizure counts 

dropped to 2 counts), and at the fourth two weeks of treatments, he/she has the estimate at 1.188 (with 

a slight increase in the number of seizure counts to 5 counts). This maybe, related to the factor effect of 

either baseline data on the number of epileptic seizures which is at 41 counts, and/or to the type of drug 

treatment (Progabide), and/or to his/her age at 22 years old. (vi) patient (No. 40) where for the first two 

weeks of treatments, he/she has the estimated value α at 1.365 (with low number of seizure counts at 2 

counts), at the second two weeks of treatments, he/she has the highest estimate of the group at 1.341 

(number of seizure counts decreased to 1 counts), at the third two weeks of treatments, he/she has the 

estimate at 1.358 (number of seizure counts stayed at 1 counts), and at the fourth two weeks of 

treatments, he/she has the estimate at 0.7597 (with a slight decrease in the number of seizure counts to 

0 counts). This maybe, related to either baseline data on the number of epileptic seizures which is at 

low 7 counts, and/or to the type of treatment (Progabide), and/or to his/her age at 28 years old. (v) 

patient (No. 56) for the first two weeks of treatments, he/she has the estimated value α at 1.336 (with 

low number of seizure counts at 1 counts), at the second two weeks of treatments, he/she has the 

estimate at 0.4808 (number of seizure counts increased to 23 counts), at the third two weeks of 

treatments, he/she has the lowest estimate of the group at 0.5539 (number of seizure counts dropped to 

19 counts), and at the fourth two weeks of treatments, he/she has the estimate at 1.086 (with a decrease 

in the number of seizure counts to 8 counts). This maybe, related to the factor effect of either baseline 

data on the number of epileptic seizures which is at 22 counts, and/or to the type of drug treatment 

(Progabide), and/or to his/her age at 26 years old. 

In brief, the values of the posterior means of estimates vary to some extent across the results for models SPMM, 

GPMM 1, and GPMM 2. For a few estimators, the values are similar. However, the differences for CAge, CBt, 
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CTrt and C0 are dramatic. The difference is clearer in the case when α>0 (mixture model) compared to α=0 

(non-mixture model). Hence we think, in the above illustration, the analysis using the new generalized Poisson 

model for the Seizure count data seems more successful than the standard Poisson model (α=0) considered by 

[2]. The proposed class of new generalized distributions offers more flexibility for Bayesian methods to choose 

among the existing classes of distribution models. 

4. Conclusion 

In this paper we investigated the impact of having a new three parameter generalized Poisson probability model 

GPM(α,β,λ) as an alternative model to the standard Poisson model SPM(λ) in (model III) of [2] generalized 

linear mixed model. We have shown the importance and usefulness of the new GPMM through the Seizure 

count data set, which are available and used by authors in the past. Another feature of proposed new generalized 

linear mixed model, is that under Bayesian perspective, it generalize the posterior of the parameters to predict 

the behavior of the Seizure count data which make the new model more resilience and litheness. Unlike the 

work of [[2] model III] who confined and limited there work only on standard Poisson model SPM(λ) to analyze 

the count data in generalized linear mixed model. The present study helps to identify problems involving 

uncertain events, and gives an efficient computational Bayesian approach with new ways of predicting and 

measuring behavior. 
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5. Appendix 

5.1.  Description of the data set 

The data set in table A taken from [1], represent a placebo-controlled medical randomized clinical trial to 59 

epileptics. Patients who are diagnosed with partial seizures were enrolled in a randomized medical trial of the 

anti-epileptic drug, called progabide. The participants in the study were randomized to either take progabide or a 

placebo, as an adjuvant to the standard anti-epileptic chemotherapy. The drug progabide has an anti-epileptic 

function which binds to both GABAA and GABAB receptors and is located on the terminals of primary afferent 

fibers and is the primary inhibitory neurotransmitter in the brain. Activation of the GABAB receptors retards the 

influx of calcium ions into the terminals, thereby reducing the evoked release of excitatory amino acids and 

possibly other transmitters. Prior to receiving treatment, baseline data on the number of epileptic seizures during 

the preceding eight week interval were recorded. Counts of epileptic seizures during two week intervals before 

each of four successive post-randomization clinic visits were recorded. Patient ID, Treatment (0=Placebo, 

1=Progabide drug), Age, Baseline 8 week seizure count, First two week seizure count, Second two week seizure 

count, Third two week seizure count, Fourth two week seizure count. A total of five seizure counts were 

recorded.  
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Table A 
 

j yj1 yj2 yj3 yj4 Trtj Basej Agej 
1 5 3 3 3 0 11 31 
2 3 5 3 3 0 11 30 
3 2 4 0 5 0 6 25 
4 4 4 1 4 0 8 36 
5 7 18 9 21 0 66 22 
6 5 2 8 7 0 27 29 
7 6 4 0 2 0 12 31 
8 40 20 21 12 0 52 42 
9 5 6 6 5 0 23 37 

10 14 13 6 0 0 10 28 
11 26 12 6 22 0 52 36 
12 12 6 8 4 0 33 24 
13 4 4 6 2 0 18 23 
14 7 9 12 14 0 42 36 
15 16 24 10 9 0 87 26 
16 11 0 0 5 0 50 26 
17 0 0 3 3 0 18 28 
18 37 29 28 29 0 111 31 
19 3 5 2 5 0 18 32 
20 3 0 6 7 0 20 21 
21 3 4 3 4 0 12 29 
22 3 4 3 4 0 9 21 
23 2 3 3 5 0 17 32 
24 8 12 2 8 0 28 25 
25 18 24 76 25 0 55 30 
26 2 1 2 1 0 9 40 
27 3 1 4 2 0 10 19 
28 13 15 13 12 0 47 22 
29 11 14 9 8 1 76 18 
30 8 7 9 4 1 38 32 
31 0 4 3 0 1 19 20 
32 3 6 1 3 1 10 30 
33 2 6 7 4 1 19 18 
34 4 3 1 3 1 24 24 
35 22 17 19 16 1 31 30 
36 5 4 7 4 1 14 35 
37 2 4 0 4 1 11 27 
38 3 7 7 7 1 67 20 
39 4 18 2 5 1 41 22 
40 2 1 1 0 1 7 28 
41 0 2 4 0 1 22 23 
42 5 4 0 3 1 13 40 
43 11 14 25 15 1 46 33 
44 10 5 3 8 1 36 21 
45 19 7 6 7 1 38 35 
46 1 1 2 3 1 7 25 
47 6 10 8 8 1 36 26 
48 2 1 0 0 1 11 25 
49 102 65 72 63 1 151 22 
50 4 3 2 4 1 22 32 
51 8 6 5 7 1 41 25 
52 1 3 1 5 1 32 35 
53 18 11 28 13 1 56 21 
54 6 3 4 0 1 24 41 
55 3 5 4 3 1 16 32 
56 1 23 19 8 1 22 26 
57 2 3 0 1 1 25 21 
58 0 0 0 0 1 13 36 
59 1 4 3 2 1 12 37 
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