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Abstract 

In this paper, we considered an implicit hybrid linear multistep method with nested hybrid predictors for solving 

first order initial value problems in ordinary differential equations. The derivation of the methods is based on 

interpolation and collocation approach using polynomial basis function. The region of absolute stability of the 

method is investigated using the boundary locus approach and the methods have been found to be A − stable for 

step-length 6.k ≤  

Keywords: Linear multistep methods; hybrid; nesting; interpolation; collocation; boundary locus.   

1. Introduction 

 The conventional linear multistep method (LMM) is defined as  

0 0

k k

j n j j n j
j j

y h fα β+ +
= =

=∑ ∑                                                                                         (1.1) 

------------------------------------------------------------------------ 
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where jα  and jβ are parameter constants to be determined. The kβ determines if the linear multistep method is 

explicit or implicit. For explicit LMM (1.1), 0kβ = and for implicit methods, 0kβ ≠ . This is a popular method 

for the numerical approximation of the solutions of initial value problems in ordinary differential equations  

( )' ,y f x y= , ( )0 0y x y=                                                                                                 (1.2) 

Its stability and order are subject to some constraints by [4]. Modification have been made to overcome the 

barrier, see [2,5,6,7,15,16] among others. Reference [6] introduced a second derivative term into the Adams-

type LMM (1.1) to obtain the second derivative linear multistep (SDLMM) of the form  

2
1 1

0
'

k

n k k n k j n j n k
j

y y h f h fα β+ − + − + +
=

= + +∑                                                                    (1.3) 

 Off-step points have been introduced into this linear multistep method to overcome Dahlquist order and 

stability barrier. Other extension of (1.1) can be found in [10,1,8,3,11,14,16]. Our interest in this paper is to 

construct an implicit second derivative hybrid linear multistep method of the form 

( ) ( ) ( )2
1

0
'

mm

k m m m
n k n k j n j n v n kkv

j
y y h f f h fβ β λ+ + − + + +

=

 
= + + +  

 
∑                                               (1.4) 

which are of order 3p k= + with the hybrids  

( ) ( ) ( )
1

2

0
'

l l ll l

k l l l
n v n k j n j n v n vv v

j
y y h f f h fβ β l

++ + + + +
=

 
= + + +  

 
∑                                                   (1.5) 

             of order * 4p k= + , where 

( ) ( ) ( )
0

2

0
'

k l l l
n v j n j n k n kk k

j
y y h f h fα β l− − −

+ + + +
=

= + +∑                                                                  (1.6) 

             of order ** 2p k= +  for 0(1)m 1l = −  

This method (1.4) seeks to approximate the solution of (1.2). The idea is to approximate (1.2) through the 

integration interval [ ]0 , xNx  where ( ) :y x [ ]0 , xNx mℜ→  in which [ ]0: , x m
Nf x × ℜ  is smooth. 

2.  Specification of the hybrid methods (1.4) 

The hybrid methods (1.4) with the hybrid predictors (1.5) and (1.6) have constant parameters 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 42, No  1, pp 297-308 

299 

( ){ }
0

km
j

j
β

=
, ( )

m

m
vβ  , ( )m

kλ , ( ){ }
0

kl
j

j
β

=
, ( )

l

l
vβ ,  ( )

l

l
vl , ( ){ }

0

kl
j

j
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=
, ( )l

kβ −  and ( )l
kl −  to be determined in such a 

way that the hybrid method (1.4) become stable. The method (1.4) is the hybrid method of Adams-type 

equipped with nested functions evaluation of the hybrid predictors (1.5) and (1.6). The hybrid parameters are 

chosen according as 
1
2mv k= − , 1

2
l

l
v kv + +

= , 0(1)m 1,l = − ( )0,lv k∈ , ,lv j≠  0(1)kj = , 1,2,3,...k = , 

1m k= −  

2.1 Construction of the Hybrid methods (1.4) 

We assume the solution of (1.4) of the form 

3

0
(x)

k
j

j
j

y a x
+

=
= ∑                                                                                                                      (2.1) 

where{ } 3

0

k
j j

a
+

=
 are real constant parameters to be determined and ( ), (1)k 3jx j o  = +  is the polynomial basis 

function. Differentiating (2.1) twice to obtain  

( )
3

1

1
'(x) ,

k
j

j
j

y f x y ja x
+

−

=
= = ∑                                                                                             (2.2) 

3
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''(x) '(x, y) (j 1)

k
j

j
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y f j a x
+

−

=
= = −∑                                                                                    (2.3) 

Interpolating (2.1), (2.2) and (2.3) at n kx x +=  and collocating  (2.2) at n jx x += , 0(1)k 2j = −  

and
mn vx x += we obtain the system of equations 
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                                       (2.4) 

Solving equation (2.4) with MATHEMATICA 10.0 Software package, the coefficients 
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( )( )' 0 1 3ja s j k= + are obtained. Substituting these coefficients into (2.1) yields the discrete scheme for 

each k . 

3. Construction of the hybrid Predictors 

The corresponding hybrid predictor is obtained from the polynomial interpolant 

( )
4

1
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k
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n l j
j

y x v h b x
+

+
=

+ = ∑                                                                                                 (3.1) 

where { } 4k
j j o

b
+

=
 are parameter constants to be determined, { } 4

0

kj
j

x
+

=
 is the polynomial basis function. Following 

the approach as in section (3), we obtain the system of equations 
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                                                    (3.2) 

Equation (3.2) is solved with MATHEMATICA 10.0 software package to obtain the coefficients of the hybrid 

predictor (1.5) 

 The corresponding error constants for the hybrid scheme and its hybrid predictors are obtained for each value of 

k from the Taylor series expansion of (1.4), (1.5) and (1.6) about nx . These are respectively 

( ) ( ) ( )1 1 2
1 0p p p

n k n k p ny y x C h y x h+ + +
+ + +− = +                                                                    (3.3) 

( ) ( ) ( )* * *
*1 1

1 1 2
1 0

l l
p p p

n v n v npy y x C h y x h
+ +

+ + +
+ + +− = +                                                         (3.4) 

( ) ( )** **
**0 0

1 2
1 (x ) 0p p

n v n v npy y x C h h+ +
+ + +− = +                                                                   (3.5) 

where ( )n ky x + , ( )1ln vy x
++ and ( )0n vy x +  are the theoretical solutions; 1pC + , * 1pC +  and  ** 1pC +   are error 
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constants of (1.4) ,(1.5) and (1.6) respectively. Due to the processing speed and the memory capacity of the 

laptop computer used in the derivation, only few stable members of the family of the method could be obtained. 

If the method can be derived using higher processor, more stable members can be obtained from step-

number 10k ≥ .  

Examples of A − stable members of the family of the hybrid methods (1.4) with error constants are: 

For 0
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with hybrids 2 1 0
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4. Stability of the Hybrid Schemes (1.4) 

This section considers some important definitions and stability properties of the hybrid schemes. 

Definition 1:  

A numerical scheme (1.4) is A − stable if the region of absolute stability lies entirely in the open left half of the 

complex plane. 

Definition 2:  

The numerical scheme (1.4) is ( )A α − Stable for some 0,
2
πα  ∈   

, if the wedge 

( ){ }:| | , 0s z Arg z zα < α= − ≠ is contained in the region of absolute stability. The largest maxa is the angle of 

absolute stability. 

Definition 3:   

The numerical scheme (1.4) is stiffly stable if (i) it is absolutely stable in the Region 

{ }1 :| Re(z) | LR z D= ≤ and (ii) accurate in the region ( ) ( ){ }2 1: D | Re | D ; | Im | D ,L RR z z z< <   <  =  such 
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that the stability region is contained in the region 1 2R R∪ . 

 The numerical scheme is Zero-Stable since the roots of the first characteristics polynomial  

                       ( ) 1k kr r rr −= −  

satisfy | r | 1i ≤  with roots of [ ] 1ir =  being simple. 

To investigate the stability properties of the family of the hybrid multistep methods (1.4), we employ  the 

boundary locus approach discussed in[14].  

Substituting the hybrid predictors in (1.6) into (1.5) then into  (1.4) at the hybrid points to yield a scheme, the 

resulting scheme for fixed k is applied to the scalar test problem ' ,y yλ=  2'' ,y yλ= ( )Re 0λ <  which 

yields the stability polynomials as 

( ) ( ) ( ) ( ) ( )( )1 2

0
, ,

m

k m m mk k j k
j p kv

j
r z r r z r H r z z rp β β λ−

=

 
= − − + −  

 
∑                                           (5.1) 

where  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2

0 0
, ... ... ...

l l

k kl l l l l lk k j k
p j j k kv v

j j
H r z r z r r z z r z Tβ β β β ll − − −

= =

   
  = − + + + +       
∑ ∑  and 

( ) ( ) ( )2

0

k l l lj k
j k k

j
T r z z rβ β l− − −

=
= + +∑  

The boundary plots are obtained from the stability polynomials for various k. 

5. The Stability Plots of the hybrid method 

The following are the boundary plots of the implicit hybrid scheme derived in: 

The boundary loci reveal that the scheme (1.4) is zero-stable. For 6k ≤ , it is A -Stable and ( )A α -Stable for 

6k > to k=9. 
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Figure 5 
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6. Numerical implementations 

This section considers numerical implementation of the new hybrid methods (1.4) on some stiff initial value 

problems in ordinary differential equations. Since the method is an implicit method, the implicitness is resolved 

by applying the Newton scheme  

[ ] [ ] [ ]( ) [ ]( )11r r r r
n k n k n k n ky y J y F y

−+
+ + + += − , 0,1,2,3,...r =                                                                       (6.1) 

or a modification of (6.1) where [ ]( )r
n kJ y +  is the Jacobian matrix of the new hybrid method. The (6.1) requires 

starting value and is generated from the explicit scheme 

( )1 1 , 2
2

r
n n n n

hy y f f p  + −= + + =                                                                                                     (6.2) 

Using fixed step-size h. The following problems are considered for implementation. 

Problem [1] 

 The Chemical reaction problems in [17] 

 4
1 1 2 3' 0.04 10 ,y y y y  = − +      ( )1 0 1y =  

 4 7 2
2 1 2 3 2' 0.04 10 3.10 ,y y y y y= − −   ( )2 0 0y =  

 7 2
3 2' 3.10 ,y y=                                      ( )3 0 0y =  

   610h −= , [ ]0,3x∈  

Problem [2] 

The non linear moderately stiff problems in [9] 

 1 1 2' 0.1 199.9 ,y y y= − −   ( )1 0 2y =  

 2 2' 200y y= − ,                         ( )2 0 1y =  

 0.0001h = with exact solution ( ) 0.1 200
1

x xy x e e− −= +  and 200
2 (x) xy e−=  
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Problem [3] 

 The Van der pol equation in [12] 

 1 2'y y= ,                            ( )1 0 2y =  

 ( )( )2
2 1 2 1' 1 /y y y y ε−= − ,  ( )2 0 0y =  

                0.001,h =  110ε −=  
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Figure 1: Graphical solution of problem1 
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Figure 2:  Graphical solution of problem 2 
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                                                   Figure 3: Graphical solution of problem3 

7. Conclusion 

This paper has presented a class of hybrid linear multistep methods (1.4) with nested hybrid predictors (1.5) for 

stiff initial value problems in ordinary differential equations. The hybrid scheme has high order stability and is 

seen to overcome Dahlquist order barrier on linear multistep methods (1.1). The scheme has been implemented 

on three stiff problems and the results in figures 1 and 3 show that the scheme (1.4) compares favourably with 

ODE15s of MATLAB in [13]. In figure 2, the graph is in alignment with the exact solution of the ODE.  
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